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ABSTRACT 

The listening post/observation post is a method employed by infantry units in combat to 

increase battlefield situational awareness and prevent surprise by the enemy. This 

technique is costly to the employing unit in terms of manpower requirements and 

increased risk to friendly personnel. To reduce these costs, we created a prototype, the 

Mobile Situational Awareness Tool, that combined commercial off-the-shelf components 

with wireless unattended ground sensors for the purpose of automating the listening 

post/observation post for the tactical infantry unit. 

The prototype system incorporated wireless sensor node prototypes created by the 

Defense Advanced Research Projects Agency, originally intended for the creation of a 

smart minefield. A web application was created using a custom Node.js server that 

enabled cross-platform monitoring of the system by warfighters in the field with mobile 

smart-devices to include smart-phones and tablets. 

Field-testing of the prototype showed the system capable of detecting and 

classifying intruders in the sensor field but revealed that more robust threat classification 

algorithms utilizing multiple sensor modalities would yield a greater degree of 

automation and autonomy.  
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I. INTRODUCTION 

A. BACKGROUND 

Situational awareness is essential to the warfighter to achieve victory on the 

battlefield.  Combat leaders require situational awareness to make timely and accurate 

decisions.  Faster and better decisions lead to momentum and the outpacing and 

destruction of the enemy.  One of the most fundamental ways that a ground warrior 

increases his situational awareness is through listening and observation posts (LP/OPs).  

LP/OPs are small groups of troops (usually 2–4 men) that are emplaced in an area to 

observe a particular sector of the battlefield that is not observable by the main body of a 

unit.  This extends the range of observation of the unit and allows for earlier detection of 

enemy activity, thus improving the awareness of the unit leader.  The utilization of 

LP/OPs is a basic and proven combat tactic.  Requiring no specialized training or 

equipment, conducting LP/OPs is a capability inherent to any infantry unit.  American 

combat forces have utilized them throughout history.   

LP/OPs are utilized in a wide variety of military operations.  In defensive 

operations, they are emplaced forward of defensive lines in order to see beyond 

intervening terrain and give advanced warning of approaching attackers.  Used in 

offensive operations, they are emplaced on the flanks of an ambush position in order to 

report the direction of the enemy’s approach.  They are also frequently used in raids, 

vehicle checkpoints, strongpoints, and counter-improvised explosive device (C-IED) 

operations.  

LP/OPs have disadvantages.  They require that troops be separated from the main 

body of the unit, taking away combat power that can be massed against the enemy.  

Though more LP/OPs expand the range of observation for the unit leader, each LP/OP 

that is employed takes troops away from the main engagement area.  Thus, manpower 

limitations place an upper bound on the total number of LP/OPs that can be emplaced by 

a single unit.   Also, isolating the troops of the LP/OP from their unit makes them more 

vulnerable to being killed, wounded, or captured [1].  The isolation of the LP/OP means 
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that it is less capable of receiving adequate supporting fires from the employing unit in 

the event of enemy contact or engagement.  Also, having friendly forces forward of 

enemy lines occupying these LP/OPs can constrain (mask) the fires of the friendly unit 

and complicate geometries of fire.  This means that because friendly LP/OPs are located 

between friendly forces and the enemy, LP/OPs run a significant risk of fratricide if 

friendly forces do not carefully coordinate their fires. Finally, because LP/OPs must be 

continually manned, they can interfere with the sleeping patterns of troops by altering the 

rest-plan of a unit over long periods of operation.  The stress of maintaining LP/OPs 

permeates all levels of leadership within a unit.  LP/OPs require significant time spent 

planning and coordinating at the upper-leadership levels of a small, tactical unit.  At the 

lowest levels, being isolated from the main body of the unit and the disruption of regular 

sleep cycles can have a negative effect on morale. 

Automation through sensors and computing technology could augment or 

potentially replace the manned LP/OP.  A surveillance system that is compatible with a 

variety of commercial off-the-shelf (COTS) smart devices could simultaneously decrease 

manpower requirements and reduce risk to friendly personnel who would otherwise need 

to man the isolated LP/OPs.  This system could provide enhanced situational awareness 

for combat leaders through a real-time monitoring capability.   

With much research underway regarding smartphone use on the battlefield [2], 

this system would leverage the anticipated proliferation of personal handheld smart 

devices on the on the battlefield and would mitigate the requirement for specialized 

monitoring equipment characteristic of other remote surveillance systems. Since 

monitoring of such a system would be conducted on general-purpose smart devices, this 

system would reduce the amount of gear that has to be carried, powered, and maintained 

by the warfighter operating in an austere environment. Furthermore, all members of a 

unit possessing a smart device and within range of the network could access the system’s 

monitoring interface simultaneously, enabling maximum situational awareness within the 

unit.  This is not possible for a sensor system with only a limited number of specialized 

and dedicated monitoring devices. 
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Previously developed technology related to ground sensors does not adequately 

address the need for automation of the LP/OP at the small unit level with the ability for 

distributed, cross-platform monitoring through the use of COTS smart devices.  

Consisting of a suite of seismic and infrared intrusion detecting sensors, relay devices, 

and monitoring equipment, the Tactical Remote Sensor System (TRSS) is the primary 

sensor system employed by the Marine Corps [3].  However, TRSS was not designed to 

be utilized by small units to increase local situational awareness and influence tactical 

battlefield decisions.  Rather, the TRSS is a high-level intelligence collecting asset, meant 

to be employed at the Marine Air-Ground Task Force (MAGTF) level and tightly 

controlled by sensor control and management platoons (SCAMP) [3].   Additionally, the 

TRSS is not interoperable with COTS smart devices and requires specially built 

monitoring equipment.  The two types of monitoring tools for TRSS are the sensor 

mobile monitoring system (SMMS)—consisting of a high mobility multipurpose wheeled 

vehicle (HMMWV) with a full load of dedicated communications equipment—and the 

portable monitor, which is a handheld display unit designed primarily for testing the 

sensors during emplacement.  The need for dedicated monitoring equipment 

unnecessarily adds to the combat load of dismounted infantry and to fuel requirements 

when the SMMS is employed: the SMMS weighs 7,785 pounds, while the portable 

monitor weighs five pounds per unit [3]. 

The TRSS also requires extensive training that makes it impractical for use by 

basic infantry riflemen.  TRSS operators in the Marine Corps are currently required to 

attend five weeks of training at the Remote Sensor Operations Course.  This level of 

required training means that only SCAMP platoons consisting of specially trained sensor 

operators are authorized to employ these systems.  However, the shortage of SCAMP 

platoons means that the majority of infantry companies in the Marine Corps will not have 

access to the personnel required to operate these sensors.  Even with sufficient sensor 

operators, the Marine Corps allocates only 600–800 total sensors per Marine 

expeditionary force (MEF), which equates to roughly 50–70 sensors per infantry 

battalion, or 16–23 sensors per rifle company.  One reason for this shortage is that TRSS 
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sensors are expensive ($1,020,847.30 per unit) [4], even though [3] describes them as 

expendable.  This cost keeps sensors out of the authorized inventory of infantrymen.   

The United States Border Patrol (USBP) is another organization that has looked to 

leveraging technology in order to detect intrusion across border areas by unauthorized 

personnel, a task that is similar to conducting a military LP/OP [5] to detect enemy 

activity.  The USBP employs a combination of technologies to monitor the southern 

border of the United States, including the remote video surveillance system (RVSS), the 

mobile surveillance system (MSS) and unattended ground sensors (UGS) [6].  The RVSS 

is a system of fixed camera positions with the ability for remote monitoring and pan-tilt 

control of the cameras, while the MSS consists of a camera mounted on a pole fixed to a 

flatbed truck.  Similar to the TRSS, all of these systems are relatively expensive, not fully 

dismountable by foot soldiers, and not able to be monitored by a multitude of commercial 

handheld devices. 

B. OBJECTIVE 

This thesis provides a reference design for an automated LP/OP to show the 

viability of a portable UGS system for employment by the basic infantry rifleman that 

automates or otherwise enhances the LP/OP to increase the situational awareness of the 

Marine rifle squad.  The mobile situational awareness tool (MSAT) is a prototype system 

consisting of networked sensors, surveillance cameras, and a portable application server 

with monitoring software that is compatible with a variety of COTS smart devices.  This 

system is inexpensive, modular, mobile, and user-friendly.  It allows monitoring and 

surveillance of the battlefield by combat warriors without the need for specialized 

training, and has added functionality such as the tracking of friendly forces and tactical 

chat capabilities, with the ultimate goal of maximizing situational awareness on the 

ground. 

MSAT incorporates a network of wireless sensor nodes that are capable of 

automatic network formation and are enabled with passive infrared sensors (PIR) for its 

primary means of intrusion detection.  The Defense Advanced Research Projects Agency 

(DARPA) developed these sensor nodes.  After intrusion detection, threats are classified 
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through the use of video cameras that are integrated into MSAT, by the operator.  The 

system uses an application server to process data from the sensor nodes and allows the 

operator to monitor the sensor field from a handheld device.  The whole system is light 

enough to be transported completely by dismounted Marines.  Furthermore, MSAT is 

intended to be compatible with the greatest number of commercial smart-devices, to 

include tablets and phones running Android and iOS operating systems.   

MSAT was built for the particular use case of a Marine rifle squad conducting a 

defensive battle position, a core task defined by the Marine Corps training and readiness 

manual (T&R) [7].  In such a scenario, the rifle squad’s mission would be to repel an 

enemy assault by fire and close-combat.  Though intelligence would provide the squad 

with a general idea as to the size and disposition of the enemy, as well as a general 

estimate of the location of this enemy, the nature of defensive operations is that the exact 

time of arrival, direction of approach, and makeup of the enemy would be uncertain.  For 

this purpose, the squad leader must emplace LP/OPs apart from his main battle positions 

in order to provide early warning of an enemy approach or to warn of enemy infiltrating 

from the rear.  These LP/OPs also provide the squad leader with the ability to see into 

dead space, or ground that is not observable due to masking by intervening terrain.  The 

farther out the squad leader places his LP/OPs, the sooner he is able to become aware of 

the enemy and make maneuver decisions in order to most efficiently and effectively 

engage the enemy.  However, this carries an increased risk to the Marines of the LP/OP 

due to the declining ability of the main battle position to support the LP/OP with fire in 

the event of enemy contact.  Also, because the rifle squad consists of only 13 Marines, 

and because no position can be manned alone according to the Marine Corps buddy-team 

philosophy, the squad leader can realistically emplace at most two LP/OPs. 

In the defensive scenario, employing MSAT would enhance the security and 

situational awareness of the squad without excessive manpower requirements.  Ground 

sensors and cameras can be emplaced farther out from the defensive position without 

concern for Marines being isolated.  Also, without Marines forward of the battle position, 

there would be less risk of fratricide and fewer restrictions on fires.  The squad can 

emplace sensors to its rear, its flanks, in surrounding dead space (e.g., draws, holes) and 
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over intervening terrain to detect enemy in areas that would otherwise be unobservable 

(i.e., areas identified in the modified combined obstacle overlay).  Since the squad is not 

restricted to two or fewer LP/OPs, many more unobservable areas can be monitored 

through the use of the system. Each of the squad’s three fire team leaders would be able 

to monitor the sensor emplacements in real-time from his own handheld device and 

observe evidence of enemy activity as it occurs.  In this way, the distribution of 

situational awareness information is automated, reducing voice radio traffic and 

confusion.  It also reduces the potential for noise required for verbal communication 

(either direct or via radio), which can risk loss of the friendly element of surprise and 

stealth.  MSAT would function in low-visibility situations (e.g., nighttime, poor weather) 

due to the versatility of the sensors. 

As a supplement to our use case, the MSAT would have the ability to be 

monitored from a remote combat operations center (COC).  This means that military 

personnel would be able to monitor the system from outside the local area of operations.  

This would allow higher-level commanders to access real-time data on battlefield events, 

thus increasing overall situational awareness in support of their ability to make better 

decisions, anticipating the needs of the units about to encounter or engage enemy combat 

elements.  This capability, though, presents a networking challenge due to the need to 

establish connectivity outside of MSAT while operating in a potentially infrastructure-

less environment. Thus, a mobile ad hoc networking capability may be essential. 

Currently, there is no system being fielded by the Marine Corps with the ability to 

execute the presented use case.  Since the TRSS is unavailable to rifle squads, is too 

expensive and complex to operate without specialized operators, and cannot be monitored 

by multiple Marines simultaneously through the use of tactical smartphones, it is 

inappropriate to our use case. 

MSAT has several potential advantages.  The relatively low cost of the system 

due to the utilization of existing COTS components would make widespread adoption by 

small infantry units feasible.  The autonomous nature of the UGS-component makes 

sensor field setup comparatively less risk-prone than sensor options requiring more 

complex installation emplacement and setup. The ability to monitor the system from a 



 7

wide variety of devices and from multiple devices simultaneously is novel and enhances 

the potential for increased situational awareness by the squad, while at the same time 

reducing the combat load for the infantry squad.  MSAT also leverages the 

familiarization most modern junior Marines have with smartphones and tablets to design 

an interface that is intuitive and requires little specialized training [8].  Lastly, the 

utilization of an asynchronous, non-blocking application server and WebSockets provides 

operators with a fast and accurate monitoring application. 

Testing the system highlights multiple weaknesses or areas for improvement for 

MSAT.  The system requires constant electrical power from batteries in order to power 

the sensors’ GPS and radios, and power is also required to provide a constant Wi-Fi 

bubble to allow remote communication access to the sensor field. Thus, operating time is 

likely too short in its current state for actual deployment of the system in combat and 

power saving strategies will have to be implemented.   

C. THESIS ORGANIZATION 

The rest of this thesis explores in detail the problem of developing a usable 

surveillance tool for the modern foot soldier and presents MSAT as a possible solution. 

Chapter II discusses how other UGS system implementations in use today fail to 

adequately solve the problem of automating LP/OPs for infantrymen.  Technologies and 

related architectures that utilized in building the MSAT prototype are then presented.   

Chapter III analyzes the task of conducting the LP/OP, as defined by the Marine 

Corps Infantry T&R manual and broadly defines the specification and testing 

requirements for the MSAT reference design.   

Chapter IV describes the design, construction, and testing of the MSAT system.  

Different iterations of the system are discussed, along with rationale for design choices 

and considerations, to include the successes and failures encountered during the 

developmental phase.  Chapter IV also presents the performance of MSAT through 

testing.  Finally, it discusses potential weaknesses and shortfalls of the system. 



 8

Chapter V, the conclusion, provides summary remarks regarding MSAT and 

suggests future work to improve the system. 
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II. BACKGROUND INFORMATION 

A. PROBLEM DOMAIN 

1. History 

An inherent action in warfare is to make threat assessments and attempt to 

mitigate the identified risks.  Arguably, the use of LP/OPs can be traced back to the 

beginnings of warfare.  A history book of the Roman Empire describes an early 

observation post, recounting, “The ground floors of these towers were used as living 

quarters by the garrison of auxiliary soldiers (cavalry and infantry), while the upper floor, 

furnished with a gallery, served as an observation-post from which the enemy could be 

watched and signals given by means of torches” [9].   Another example of an early 

LP/OP comes from the American Revolution, when colonial insurgents utilized 

observation posts on Long Island to warn of inbound British Troops [10].  During the 

challenging jungle fighting of Vietnam, LP/OPs were used extensively to facilitate early 

warning in the dense vegetation that surrounded patrols and outposts [1].   

The current employment of LP/OPs remains relatively unchanged from the early 

days of warfare.  LP/OPs in Afghanistan have been utilized to detect and disrupt the 

enemy.  They were reinforced with powerful optics that increased the range of 

observation and allowed troops to view the surrounding terrain, even in low-light 

conditions.  Commanders in charge of combat outposts (COPs) utilized LP/OPs to deny 

insurgent observers key terrain from which to coordinate indirect fire, and also prevent 

the occupation and utilization of machine gun positions.  Upon the unit leader 

determining the necessity of LP/OPs as part of the defensive plan, leaders had to 

determine the best way to support these positions with fires and logistics.  Due to the 

ruggedness of the Afghan terrain, which had the tendency to isolate American troops due 

to strained communications [11], this proved a difficult challenge.  Considerations 

included the rotation schedule required to staff the position or positions, the amount of 

logistical materials needed to keep the position combat effective, and the positioning of 

the unit’s weapon systems and coordination of geometries of fire.   After the initial 
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planning and establishment of the LP/OPs, adjustments inevitably needed to be made to 

reinforce the overall defensive plan.   

2. LP/OP Tactics, Techniques, and Procedures 

The Infantry Training and Readiness (T&R) Manual (NAVMC 3500.44A) 

outlines the individual and collective training requirements that Marine Corps infantry 

units will train toward in preparation for combat.  One of the tasks found in the T&R 

manual, titled INF-MAN-3102, is to conduct a listening post/ observation post.  The T&R 

manual outlines the condition, the standard, and the event components.  The condition for 

executing the LP/OP is stated as, “Given a unit, an order, and supporting a defensive 

scheme of maneuver during daylight and limited visibility” [7].  The standard is “to 

provide early warning while seeking to avoid direct enemy contact” [7].  The event 

components are as follows: “conduct planning, conduct resupply, prepare for combat, 

execute command and control, conduct a passage of lines, move to the LP/OP, conduct 

link up as required, conduct relief in place as required, occupy the LP/OP, establish 

security, conduct weaponeering, deconflict battlespace geometry, maintain 

communications, improve positions as necessary, confirm prescribed routes to friendly 

lines, provide early warning, report information, break contact as required, move along 

prescribed route(s) back to defense, conduct passage of lines, conduct post combat 

actions” [7].  When all these tasks are capably performed and validated by a commanding 

officer, a Marine unit is considered proficient in the execution of the LP/OP. 

A similar Army publication [12] delves deeper into describing the conduct of the 

LP/OP, which is valuable in understanding the implementation of such a position.  

According to [12], the first task is to properly select the location of the LP/OP.  The 

location should provide maximum observation of the assigned battle space.  The location 

should provide cover, concealment, and protection for the troops occupying the position.  

It is also important that the route to and from the LP/OP be covered and concealed, so as 

to allow troops to safely occupy, rotate into and out of, provide resupply, and egress from 

the position.  The location also needs to be within range of supporting fires by the main 

body element utilizing their direct fire weapon systems.  Next, a unit leader must assign a 
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sector of observation in harmony with the overall plan, determine what kinds of things 

the troops should be observing, and detail what needs to be reported to higher command.  

The LP/OP should be robust enough to operate during low light conditions.  It is 

important, when selecting a position, to avoid obvious terrain that would draw attention 

to the presence of the LP/OP and alert the enemy.  An in-depth communication plan is 

needed for the LP/OP, which includes redundant methods of communication.  Wireless 

radio communication, pyrotechnics or smoke to create a signal, and messengers can all be 

used as a means of reporting. 

Once these considerations are satisfied, the LP/OP plan is executed.  At a 

minimum, it is manned by two troops.  For larger observation areas or longer periods 

between relief, a fire team of four troops may be necessary to man the position.  While in 

the position, one troop is responsible for scanning the terrain and looking for anomalies 

while their partner records the information.  The troop acting as the observer should be 

rotated every 20–30 minutes to reduce fatigue and increase attention.  The LP/OP team 

should be relieved every 2–4 hours, keeping in mind that each tactical scenario will drive 

this determination.  These details on the execution of the LP/OP highlight a very 

deliberate planning process and taxing execution cycle that ultimately takes a toll on 

those conducting the operation.  Due to the inherent complications of utilizing human 

beings in LP/OPs, there has been an attempt to apply technology toward this necessary 

combat task in an overall effort to reduce the numerous pitfalls of requiring troops to man 

these positions. 

3. Introduction of Technology 

The use of ground sensors in military applications dates back to the Vietnam era 

and became public knowledge on April 17, 1967 [13], in a Newsweek article, and was 

again alluded to on September 7, 1967 [13], when Secretary of Defense Robert 

McNamara gave a press conference vaguely describing the concept of an electronic 

barrier that was going to protect South Vietnam.  This barrier was to be emplaced along 

the demilitarized zone and the Ho Chi Minh trail to monitor enemy troop traffic, since the 

carpet bombing raids of North Vietnam were ineffective against thwarting the enemies’ 
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ability to mobilize troops along these routes [14].  The creation of this barrier was 

envisioned by a think tank organized in 1959, named the Jasons, which proposed a hybrid 

approach of using ground positions, pinpointed bombing raids, air-laid mines, and the use 

of battery-powered sensors [14].  This “highly theoretical” plan (e.g., code name Igloo 

White), as stated by Military Assistance Command Vietnam Commander General 

Westmoreland, was opposed by the Navy, Air Force, and the Marines [14].  The Marines 

especially opposed the project, since the barrier’s location was in their battle space, and 

they were responsible for providing troops and resources to the construction efforts.  

However, sentiments quickly changed in regard to the new technology when the Marines 

were provided the sensor systems in an effort to defend their outpost during the Battle of 

Khe Sanh.  After a month of flight operations, 316 acoustic and seismic sensors were air 

delivered, equating to a total of 44 sensor strings [14]. The Marines were impressed with 

the sensors’ ability to accurately track the enemy and credited the sensors with providing 

forty percent of the actionable intelligence to the fire support coordination center [15]. 

They also credited the sensors with preventing another fifty percent loss of Marine forces 

[15].  On one such occasion, sensors indicated that a massive troop formation was 

assembling near a remote hilltop outpost.  Artillery used this information to prevent the 

enemy assault and inflict heavy losses on the North Vietnamese soldiers.  The 

commander of the 26th Marine Regiment, Colonel David Lownds, recounted this event at 

Khe Sanh stating: 

The sensors which had been emplaced on Route 9 to the Laotian border 
suddenly came to life and it became obvious that a large column was 
moving adjacent to Route 9 toward the base…  By computing the length 
of the column by information produced by the sensors, it became obvious 
to me that an enemy regiment was trying to close the base.  This 
information coupled with possible assembly areas, allowed us to bring 
down upon this unit devastating firepower to breakup the impending 
attack. [16] 

This was arguably the Marine Corps’, as well as any of the services’, first 

exposure to automated sensor systems in an early warning role and its effectiveness was 

proven through some of the most intense combat that American forces faced during the 

Vietnam War.  Igloo White operations on the trail continued after this, in support of the 
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Air Force strategic bombing campaign, that targeted troop movements and logistical 

resupply convoys along the Ho Chi Minh trail [14].  Overall, there were many localized 

success stories involving the use of sensor systems in Vietnam; however, the price tag of 

over one billion U.S. dollars per year and the minimal effect on the enemy at the strategic 

level lead members of Congress and the military to question its future use [17]. 

After Vietnam, there were stock piles of sensors and supporting communications 

equipment, and when a situation presented itself where the devices could be employed for 

military operations other than war (MOOTW), America was eager to test them in a peace 

keeping role [18].  When Israel and Egypt agreed to negotiations with the U.S. Secretary 

of State, and a peace treaty was signed, there was a buffer zone created and the use of 

ground sensors was utilized to enforce the treaty that both parties had signed [18]. 

Following the Sinai Treaty Agreement, there were no recognized uses of ground 

sensors in combat scenarios or MOOTW, until Operation Iraqi Freedom (OIF) in Iraq and 

Operation Enduring Freedom in Afghanistan (OEF).  The border patrol had started 

surveillance of America’s borders with sensor systems in the mid-1970s, and it continues 

to do so today [18].  The gap in sensor usage between the Vietnam/Sinai eras and the Iraq 

and Afghanistan wars can be attributed to the gradual improvement of sensor, 

communication, and computer technology that made sensors a more viable possibility in 

the modern era.  Sensor systems were steadily researched and developed until reaching a 

culminating point when devices were made small enough for practical usage and with 

increased processing power.  They also became cost efficient to the point that they could 

begin to be considered for actual combat use without the cost impact of losing sensors.  

This climate of reduced size and cost, coupled with increased computing power, ushered 

in an advanced age where sensors began to realize high demand across current 

battlefields. 

B. SIMILAR ATTEMPTS TO SOLVE THE PROBLEM 

1. Tactical Remote Sensor System  

The military recognized the importance of the wireless sensor network and 

unattended ground sensor technology breakthroughs and sought to integrate them into 
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current operations.  Since the Marine Corps’ first introduction to UGS in Vietnam, it 

more recently fielded the TRSS, which is employed by the Ground Sensor Platoon 

(GSP).  This system was composed of a suite of sensors that offered detection of human 

activity and movement of vehicles in real time.  Due to it being a Marine Corps 

surveillance asset, the actual specifications and limitations of the system were not 

advertised, but it is public knowledge that the sensors have the ability to monitor an 

environment for at least thirty days [4].  The system, as dictated by the task organization 

and table of equipment document (TO/TE), was a MEF intelligence asset and therefore 

very difficult to utilize at the small unit tactical level given that there were only 6 TRSS 

systems allocated per MEF.  According to the Marine Corps Global Combat Support 

System (GCSS), one system cost $1,020,847.30.  Equipment in a sensor set consisted of 

both a vehicle monitoring system (A2306) and unattended ground sensors (A3255); both 

are shown below in Figure 1.  Each TRSS unit consists of 24 Seismic Intrusion Detectors 

(SID), 24 Infrared Intrusion Detectors (IRID), 24 Air-Delivered Seismic Intrusion 

Detectors (ADSID), four portable monitors, and one Sensor Mobile Monitoring System 

(SMMS) [4]. 

 

Figure 1.  USMC TRSS Components, from [4] 
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Unfortunately, the mobile monitoring system was mounted in an HMMWV, 

which did not lend itself well to transport within the confined areas where dismounted 

troops were likely to operate.  The system, compared to current sensor technology, can be 

considered outdated, costly, bulky, and training intensive—it required members of the 

GSP to be trained for a period of thirty-five days to properly employ the devices [4], a 

period of time that would make widespread training of personnel within Marine infantry 

battalions impractical.   

2. Border Patrol 

The USBP was another organization that invested heavily in technology capable 

of detecting intrusion across border areas by unauthorized personnel.  The USBP 

employed a combination of technologies to monitor the southern border of the United 

States, including RVSS, the MSS and UGS [6].  The RVSS was a system of fixed camera 

positions with the ability for remote monitoring and pan-tilt control of the cameras, while 

the MSS consisted of a camera mounted on a pole fixed to a flatbed truck.  Similar to the 

TRSS, all of these systems were relatively expensive, not fully dismountable by foot 

soldiers, and not able to be monitored utilizing a multitude of commercial handheld 

devices. 

On April 5, 2011, U.S. Customs and Border Protection (CBP) issued a request for 

information (RFI) to determine the current state of the art in UGS systems, what 

advances had been made, and what would be the most effective employment of the 

system.  The CBP conveyed the importance of UGS to their mission by stating, “An 

integral component to this situational awareness is the use of unattended ground sensor 

technology that provides information on the location of potential illegal border entries.” 

[19].  After almost two years of research and input from the market leaders in UGS 

technology, the Office of Technology Innovation and Acquisition (OTIA) for the CBP 

released a cancellation of the RFI stating, “OTIA is not planning to release a solicitation 

for this specific requirement in the near future” [19].  On February 11, 2013, Wired (a 

technology-oriented magazine) did an interview with CBP following this abrupt change 

in direction for their UGS program.  CBP’s public affairs officer, Jenny Burke, described 
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the cancellation as a result of failure to resolve overlapping issues in integrating new 

UGS with an existing system, oversaturation of radio frequencies, and limited bandwidth. 

[20].  It was estimated at the time of the article that the sensor system issues highlighted 

would be resolved within the next six to nine months, and the CBP would again try 

upgrade the aging sensor system.  The UGS upgrade was a necessary priority for the 

CBP’s layered approach to defending the U.S. border, especially when considering the 

December 2005 Department of Homeland Security (DHS) Office of Inspector General’s 

(OIG) report [21].  In this report, the OIG found that only four percent of the detections 

triggered by the sensors were illegal border crossings.  During the review of a sample of 

the system data, it was determined that thirty-four percent of the signals were false alarms 

and the other sixty-two percent were unknown, due to the lack of a capability for the 

sensors to classify the intrusion and the unavailability of personnel to respond. 

This look at the CBP sensor system highlights multiple key reasons for continued 

exploration in the wireless sensor networks (WSN) field.  Foremost, the need for 

commercially available low cost sensor systems is a common requirement for projects 

within military and civilian entities.  The technology, software, and hardware are at a 

state of advancement where the introduction of a highly effective WSN is feasible.  

Secondly, the complexity of issues surrounding the WSN domain is challenging and the 

fundamental problems of routing, integration, networking, and data propagation have not 

been solved. 

C. RELATED TECHNOLOGICAL APPLICATIONS 

1. Wireless Sensor Networks 

Wireless sensor networks are increasing in popularity due to their ability to 

greatly enhance our situational awareness of our surroundings and the fact that 

technology has developed to a point where these devices are becoming financially 

practical to emplace throughout the environment.  This has enticing potential within the 

military domain, since situational awareness is critical to maintaining surprise in 

offensive actions and early detection in support of defensive operations. The authors of 

Wireless Sensor Networks best sum up the challenges currently facing WSNs by saying:  
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The design, implementation, and operation of a sensor network requires 
the confluence of many disciplines, including signal processing, 
networking and protocols, embedded systems, information management, 
and distributed algorithms.  Such networks are often deployed in resource 
constrained environments, for instance with battery operated nodes 
running untethered.  These constraints dictate that sensor network 
problems are best approached in a holistic manner, by jointly considering 
the physical, networking, and application layers and making major design 
trade-offs across the layers.  Consequently, for an emerging field such as 
sensor networks that involves a variety of different technologies, a student 
or practitioner often has to be versed in several disparate research areas 
before he or she can start to make contributions. [22] 

Another interesting relevant challenge relates to how the military will adapt and 

incorporate this kind of device into current military operations.  The question of how the 

basic Marine riflemen can employ this tool is an interesting one to military officers.  That 

question also touches upon the fundamentals of usability design within the study of 

Computer Science.  Understanding how an end-user interacts with a WSN should be the 

focal point in integrating these devices successfully into combat operations.  A more 

user-friendly approach, coupled with a lightweight employment of the device would 

greatly enhance the adaptation and employment of this system in tactical operations at the 

small unit level. 

2. Defense Advanced Research Projects 

Defense Advanced Research Projects (DARPA) is experimenting with Wireless 

Sensor Networks, particularly as part of the Adaptable Sensor System (ADAPT) 

program.  The focus of this program is to streamline the development and procurement of 

intelligence, surveillance, and reconnaissance (ISR) sensor systems, within the military, 

so that the sensor systems can keep pace with the commercial market and allow for the 

best tools to be fielded for the mission.  It is estimated that the typical military sensor 

system takes between three to eight years of development and testing before it is fielded 

to operational units [23].  In comparison, commercial sensor systems that are developed 

in a more competitive environment are fielded in one to two years.  The primary goal of 

the ADAPT program is “To deliver common hardware and software that can be quickly 

configured to perform a variety of mission-specific ISR applications” [23].  The ADAPT 
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program achieves this by focusing on a reusable hardware core, reusable software, and 

sensor-specific applications.  The reusable hardware core is of interest because it utilizes 

already-available low-cost commercial components and is capable of being upgraded as 

the state-of-the-art advances.  The reusable software addresses issues of processing, 

storage, navigation, communication, and orientation, which are common to a wide array 

of sensor systems and could be reused many times over.  Currently, sensor development 

requires that generally unique hardware and software be developed for their 

implementation.  Sensors created through the ADAPT program would utilize more 

modular and reusable hardware and software; the driving factor for sensors, packaging, 

and components will be the needs of the mission that calls for their use.  Through 

DARPA’s research, researchers have developed a prototyped WSN capable of 

autonomous network formation, object tracking, and propagating track information 

throughout the network, while keeping the cost per node less than $1,500 [23].  

Leading up to the ADAPT program, DARPA spent considerable time investing in 

WSN research, as evidenced by programs like SensIT, Smart Dust, NEST, and TinyOS 

[24].  Arguably, such research started with the distributed sensor network (DSN) 

program, which began in the 1980s [25]. 

3. Single Board Computers 

As predicted by Moore’s Law [26], the number of transistors able to be embedded 

onto a chip increased rapidly during the period beginning in the 1960s and continuing 

into the 21st century.  In the early 2000s and into 2014, a number of individuals 

capitalized on the availability, affordability, and the shrinking size of processors to create 

tiny, single board computers (SBCs) and microcontrollers geared toward students and 

hobbyists.  The first of such products, the Arduino, was released in 2005 by an Italian 

startup and meant for use by students learning electronics at the Interaction Design 

Institute Ivrea [27].  The Arduino was a 32-bit, 16-MHz microcontroller with 14 digital 

input/output pins [28] and could be purchased for approximately $30 U.S. [27].  All 

hardware and software were kept open-source [28].   What made the Arduino unique was 

not only its small size and low-cost, but also its ease of programming and ability to 



 19

control a large variety of commercially-available sensors [29].  This made it a suitable 

candidate for potential inclusion into prototyped WSNs.    

In 2012, the Raspberry Pi, an SBC with an Arm-Processor running Gnu/Linux 

also designed for students and hobbyists, entered the market selling for only $25 each 

[30].  The Raspberry Pi was the size of a credit card, had the ability to connect to a wide 

variety of peripherals to include Wi-Fi adapters and cameras, and had enough processing 

power to play high-definition video [31].  The Raspberry Pi proved to be extremely 

versatile and was utilized in a variety of applications to include webservers [32] and low-

cost surveillance systems made of commercially-available components [33].   

Other commercially manufactured SBCs capable of being networked and 

interfaced with sensors included the BeagleBone [34], the BananaPie [35], the Android 

MK802 [36], Via APC [37], and the Intel NUC [38].  Some companies combined 

microcontrollers, mini computers, and sensors into do-it-yourself kits for hobbyists—

Ninja Blocks was one such company that combined the BeagleBone, Arduino, and a suite 

of various sensors into a kit for building custom, automated home security systems at a 

price of $199 [39].  The growing availability of SBCs and microcontrollers capable of 

being interfaced with cheap commercial sensors and various networking components 

offered exciting opportunities to rapidly build robust WSN prototypes, custom-tailored to 

satisfy fine-grained military use-cases, to include automating the LP/OP. 

4. Node.js 

Node.js was a software platform for creating networking applications.  This 

framework was ideal for network programming, where multiple clients requested a 

service.  Its strength was the speed in which requests were serviced.  This speed was 

derived from its asynchronous nature, where requests were handled on a single-threaded 

event loop.  Node.js was built on top of Google’s V8 JavaScript engine, which compiled 

JavaScript instructions to machine code.  A growing community of web developers and 

industry leaders migrated to this platform for the high performance Node.js offered [40].  

Due to this increased following, the community developed a large code base of modules, 

which aided in the rapid development of networking applications.  This technology is 
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relevant to the problem of automating the LP/OP through the use of WSNs because of its 

ability to serve high performance real time applications that are suitable for use on mobile 

devices, thus enabling a robust user interface to the system.   

5. Responsive Design 

As the number of mobile, handheld, and tablet devices increase, 

developers/designers face an ongoing challenge to effectively deliver their web content to 

the user.  In light of this shift toward using mobile devices to access web content, the 

initial instinct of developers was to design an independent “m.domain” site that would be 

served to all mobile devices [41]. Developers quickly realized the challenge in 

maintaining two separate web sites, as well as the significant challenge of getting the 

content to display correctly for any device, screen, operating system, and browser.  

Responsive web design (RWD) purports to address these problems and has garnered 

considerable attention from the web development community since 2010.  This is an 

interesting concept for military applications, since all too often products are developed 

for the military utilizing proprietary technology/contracts that ultimately pigeonhole the 

military in a position that may not be the most beneficial solution for the long-term.  This 

freedom of having a “one size fits all” mentality allows the application to be served to a 

wide variety of devices, giving commanders and troops the ability to decide what 

platform is best for the mission. 

Ethan Marcotte first coined RWD on May 25, 2010, when he wrote a seminal 

article on the fundamentals of the concept [41].  The overarching idea can be best 

encapsulated by his statement, “This is our way forward.  Rather than tailoring 

disconnected designs to each of an ever-increasing number of web devices, we can treat 

them as facets of the same experience.  We can design for an optimal viewing experience, 

but embed standards-based technologies into our designs to make them not only more 

flexible, but more adaptive to the media that renders them.  In short, we need to practice 

responsive web design” [41].  This article introduced the three building blocks of RWD 

as fluid grids, flexible images, and media queries.  Through the use of these tools, in 

designing web applications, it has become possible to serve content to a wide variety of 
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devices ranging from mobile to desktop, without losing the importance of the intent and 

content of that information—even when viewed on small screens. 

6. Military Push for Mobile Device Applications 

Though the United States military recognizes that there are still security 

vulnerabilities to overcome with wireless communication, it is accepted that the future of 

military computing will embrace the mobile domain [42].  “The Army Cellular 

Capability Development Strategy,” released in 2011 by the U.S. Army Signal Center for 

Excellence, presents a vision where cellular technology is heavily utilized for battlefield 

communications, with smartphones being the workhorse for a multitude of combat tasks 

by different levels of leadership.  Such a future strategy would “leverage commercial 

communications infrastructure for units both in garrison and while operationally 

deployed” [43].  The Army has even established a course for soldiers to learn how to 

write smartphone applications for military use [43].   

While the Department of Defense has recognized the ubiquity of mobile devices 

and networking and has taken steps toward embracing the technology, it still faces 

significant challenges in implementation beyond security concerns.  One of the biggest 

difficulties is the difference in devices that are used.  There is not a single type of 

platform that the military has chosen to utilize at all times [43], and this multitude of 

devices complicates the development of new applications.  Operators may utilize 

Android, iOS, or BlackBerry devices.  Tablet and smartphone variations of these devices 

also exist, often with different screen sizes and device characteristics.  These differences 

complicate the development of new applications, and it is a significant challenge to allow 

the widest degree of cross-compatibility among devices, especially since developing for 

these different platforms requires knowledge of different programming languages.   

In order to reduce labor requirements for development and to allow the greatest 

cross-compatibility, code that can be written once and utilized across devices is highly 

desirable, and HTML5, an Internet markup specification, can possibly meet this need by 

providing a common development language [43]. 
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D. SUMMARY 

This chapter has shown how the application of wireless sensor technology to the 

tactical support of ground troops in combat has been limited.  Existing sensor systems are 

too expensive for widespread deployment by infantry units, too complex to be utilized 

directly by the warfighter, and not capable of being monitored without specialized 

equipment that places a further weight burden on the already overloaded infantryman.  

This chapter has also highlighted key technology capable of providing a solution to this 

problem, showcasing the drive of the United States military toward the use of mobile 

devices for battlefield communications tasks.  In Chapter III, the concept of a wireless 

sensor system for use by the infantry squad conducting an LP/OP is presented.  This 

concept explores leveraging COTS components to build a cheap, effective, and highly 

usable system for increasing the situational awareness of infantrymen through computer 

automation.  
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III. MOBILE SITUATIONAL AWARENESS TOOL CONCEPT 
DESIGN 

This chapter introduces the infantry task of conducting the LP/OP for unit security 

in combat. It discusses the challenges and limitations that units face when using this 

technique.  Next, it closely examines Marine Corps requirements for conducting the 

LP/OP and then the historical lack of automation for LP/OPs, especially in light of 

advances in technology and the direction the armed forces are taking with respect to 

mobile computing.  It then explores the requirements for automating the LP/OP, and 

presents a concept for an automated solution including the sensor nodes, the application 

server, and the mobile devices required for such a system.  Following this, the chapter 

suggests a number of possible use-cases for such a system, with proposed tactics, 

techniques, and procedures (TTPs) for employment.  Finally, it proposes how such a 

system could be incrementally tested as it is built. 

A. PROBLEM DESCRIPTION 

1. Utility of the LP/OP 

The LP/OP has served the vital function of being the eyes and ears of combat 

leaders since the earliest days of human conflict, buying a force precious time to react to 

enemy maneuver by providing early warning of intrusion into a geographical area of 

interest [9].  The LP/OP offers a simple trading of time for space; by positioning troops 

forward of friendly lines with the task of watching for enemy movement, advanced 

knowledge of enemy activity is learned.  This advanced knowledge then drives the 

combat leader’s own scheme of maneuver, allowing for the repositioning of personnel 

and weapon systems in order to more effectively engage the enemy.  Additionally, 

because LP/OPs are positioned to best observe enemy troop movement, the LP/OP can 

potentially arrange indirect fires, such as artillery and mortar fire [44].  This requires that 

the LP/OP have personnel trained in the call for fire procedures (CFF) and have a real-

time communications capability, either through radio or field phone, with the element 
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providing fires [44]. Indirect fires have the added benefit of buying even more time for 

the combat force through disrupting and delaying a maneuvering enemy. 

2. Limitations of the Traditional LP/OP 

The utility of the LP/OP is apparent, but executing this tradeoff of time for space 

comes at a considerable cost to a combat force, and there are also several risks that the 

combat leader must mitigate.  Operating LP/OPs requires considerable planning by 

involved leadership. Leadership must create a rotation schedule in order to keep LP/OPs 

continuously manned with fresh troops [7].  This rotation schedule is vital in order to 

ward off fatigue and boredom, which causes inattention by LP/OP operators and degrades 

the effectiveness of their position [45].  This inattention can lead to the operators 

themselves becoming vulnerable to sneak attacks by the enemy. The rotation schedule 

can be difficult to integrate into the overall security schedule of the main body of troops 

and is furthermore difficult to optimize for the greatest amount of rest.  Adding more 

LP/OPs to the battle plan only compounds the complexity of the problem.  

Regardless of the efficiency of the rotation schedule, LP/OPs demand a greater 

aggregate amount of work for the executing unit, which adds to combat stress, fatigue 

and risk.  Since a combat unit must constantly maintain a ready posture, removing troops 

from the local security rotation to man the LP/OPs shortens rest cycles and more quickly 

fatigues the unit.  In addition, moving back and forth between LP/OPs and main battle 

positions requires further exertion.  This movement can also draw attention from the 

enemy and expose friendly forces to enemy fires.  Further risk is caused by the threat of 

fratricide when forces are positioned forward of friendly battle positions, as is the case 

with the LP/OP.  Mitigating potential fratricide requires additional planning—leaders 

must plan their fires with LP/OPs as a major consideration [7].  The presence of LP/OPs 

can potentially constrain the fires of friendly forces engaging the enemy if the LP/OP is 

positioned within the danger area of friendly fires, thereby limiting the combat power of 

the force.  

In addition to the risk of fratricide, the LP/OP carries the additional risk of being 

cutoff from friendly forces.  This risk is owed to the fact that the LP/OP is positioned 
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forward of friendly units and is therefore more easily isolated.  Being cut off from 

friendly troops and support could result in the destruction of the LP/OP or the capture of 

occupying personnel.  

Finally, since the LP/OP manning is drawn from the main body of the friendly 

force, the combat power available to be massed on the enemy by that force is diminished.  

These disadvantages exist for a common reason: human beings man the LP/OP.  

As human beings become fatigued they stop paying attention; they must therefore rest.  

Human beings are vulnerable to friendly and enemy fire, and can be captured by the 

enemy.  Human beings must eat, drink, and eliminate waste, which can attract enemy 

attention.  They also may become bored and demoralized when isolated for long periods 

of time, which degrades combat performance [46]. 

3. Formal Marine Corps LP/OP Requirements 

In order to build a system that automated the functions of the LP/OP, it was 

necessary to first precisely define the functional requirements of the LP/OP. To do so, we 

examined relevant Marine Corps warfighting publications.  

The Marine Corps Infantry T&R Manual precisely defines the requirement for the 

infantry fire team to conduct a LP/OP [7].  This task requires that the Marine infantry fire 

team “provide early warning while seeking to avoid direct enemy contact” as part of 

defensive operations, both day and night.  This formal requirement states that this task 

must be accomplished while "supporting a defensive scheme of maneuver during daylight 

and limited visibility.”  Limited visibility, in terms of tactical situations, is meant to be 

any condition that would degrade the visual acuity of military personnel.  Such conditions 

include darkness at night, adverse weather conditions (e.g., rain, snow, sandstorms), or 

observation-limiting terrain such as heavy vegetation, dense urban structures, or micro 

terrain (e.g., hills, draws, valleys, or depressions) that interfere with line of sight [7].  

According to this standard, executing the LP/OP consists of many critical 

components. The LP/OP must be planned; it must be resupplied; and it must maintain 

communication with higher headquarters.  It should also report critical information when 
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observed.  It must maintain its own security and there should be a plan to break contact 

with the enemy and move back to friendly defensive lines, which requires coordination 

for the passage of friendly lines [7].  

MCWP 3-11.3, Scouting and Patrolling [47], an authoritative Marine Corps 

publication on small-unit infantry operations, provides further guidance on the proper 

execution of the LP/OP.  In choosing the location of the LP/OP, the site should not be 

prominent and therefore obvious to enemy forces [47].  OPs should also not be manned 

for more than 24 hours; however, in practice they are frequently manned for longer 

periods of time due to the work required in constructing a new position.  LP/OPs should 

be occupied and exited using diverse and concealed routes.  Observers in the LP/OP 

should utilize all pertinent senses, to include sight, smell, and hearing, to discover and 

report enemy activity. 

The information to be reported regarding the enemy by the observers is a critical 

component of every LP/OPs mission.  Every situation will dictate independently what 

unit leaders want observed and reported.  The NATO spot report (SPOTREP) provides a 

standard used by Marines to report enemy activity [47].  The SPOTREP describes the 

size and strength of the enemy unit being observed, the actions of this enemy, their 

location, the enemy unit (identification), the time of the enemy observation, and the 

equipment and weapons being utilized by the enemy collectively referred to as 

Size/Activity/Location/Unit/Time/Equipment or SALUTE.  This acronym, SALUTE, is 

widely used at the small-unit level whenever there is a need to thoroughly describe the 

nature of the current enemy [47], such as when a unit leader briefs his Marines in an 

operation order on the nature of the enemy they will face. 

MCWP 3-11.2, Marine Rifle Squad, also provides information on the LP/OP [48]. 

This source gives a metric on the distance from friendly lines that an LP/OP should be 

employed while the unit is in a security posture.  The prescribed distance is 460 meters, 

which is approximately the maximum effective range of the M16/M4 battle rifle 

employed by the majority of infantry Marines. 
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4. Historical Lack of Automation 

The LP/OP has undergone minimal automation despite often being supplemented 

by tools that allow enhanced perceptual abilities [47], such as telescopes and infrared 

optics.  These supplements have not significantly reduced the human involvement in the 

conduct of the LP/OP, as most continue to require perpetual human monitoring.  

As discussed in Chapter II, the United States military is embracing the ubiquity of 

mobile computing in the civilian sector and exploring methods of adopting this 

technology to automate various battlefield tasks.  Local surveillance and security, the 

kind provided by troops conducting LP/OPs, should be one of these tasks aided by the 

growth of mobile device use within the military.  

5. Requirements for an Automated LP/OP 

We utilized authoritative Marine Corps publications for identifying the primary 

requirements of a system that would automate the LP/OP.  The system should be capable 

of detecting an enemy in sufficient detail so as to satisfy the requirements of the 

SPOTREP and SALUTE; it must be able to do so both during daylight and in low-light 

conditions.  To accomplish this task, the system should be capable of utilizing multiple 

sensing modalities similar to the way Marines use multiple senses to detect hostile 

activity.  Additionally, the system should be able to report the SPOTREP in near real-

time to the employing unit leader so as to provide actionable information.  Furthermore, 

the system needs to be inconspicuous so as to avoid enemy detection.  

We identified further critical requirements for designing an automated LP/OP 

system, not found in the Marine Corps formal publications.  First, the system would have 

to be cost effective to be fielded in quantities large enough for widespread use throughout 

the Marine Corps’ infantry units.  The strategy for achieving this low per unit cost would 

be to utilize COTS rather than building expensive, specially designed hardware and 

software.   

Second, the system would need to be easy to learn and utilize, requiring little time 

for the average Marine rifleman to become proficient with its employment.  Infantrymen 

must learn and maintain proficiency in a wide variety of skills, and therefore extra time 
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for training is scarce. Most infantrymen have little training in sensor system employment 

and operation; this system should not place an extra training burden on the infantry unit.  

Ease of use would also ensure the ability for the widest possible group of infantrymen to 

use the system, thus enabling great flexibility in its employment.  In order to accomplish 

the highest level of usability, the user interface (UI) of the system would need to leverage 

the widespread familiarity with commercial mobile devices that has accompanied the 

boom in smart devices (i.e., tablets and smartphones) and the accompanying popularity of 

such devices amongst young service members [43].  Therefore, the design should mirror 

the “look and feel” of applications commonly found in the civilian market and utilized by 

Marines in their personal lives.  Also, with the predicted proliferation of mobile devices 

on the battlefield [43], the system should be capable of interfacing with the widest variety 

of mobile devices.   

Third, in order to network the COTS components of the system together 

effectively, we determined that system components should utilize the ubiquitous 

Transmission Control Protocol/Internet Protocol (TCP/IP).  This would allow connecting 

the widest possible variety of parts and the possibility of later augmenting or substituting 

pieces of the system with other IP-compatible sensors or components, as well as 

incorporating new types of handheld monitoring devices (i.e., new models of 

smartphones and tablets).  Also, utilizing TCP/IP and COTS parts would allow for the 

fastest development of a prototyped system, the ability to make timely improvements, 

and for the rapid adaption of the system to satisfy changing mission requirements.  

Fourth, the system as a whole should be practical for dismounted infantrymen to 

carry and employ.  With the average infantrymen carrying more than 60 pounds of gear 

in his combat kit [49], the system would have to be as light and portable as possible.  Due 

to constraints on power, the system should also have its own power source; weight 

limitations would limit the amount of power available to the system.  The system should 

have enough power to have a practical life span in the field, meaning it should be able to 

be continuously operated for a significant number of days with only its onboard power 

source. 
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Finally, in order to be practical for use by the warfighter in stressful combat 

situations, the system should be as autonomous in operation as possible, meaning very 

minimal effort would need to be required on the part of the human operator to initialize 

the sensor network and maintain its useful operation.  A self-configuring, ad-hoc network 

of sensor nodes was therefore preferred.  In short, the system should be easily networked, 

cost-effective, limited learning curve, easy to use, extremely portable, long endurance, 

highly autonomous, and have an extensive effective field of view. 

B. CONCEPT FOR AN AUTOMATED SOLUTION TO THE LP/OP 

1. Problem Solution: Proposed Architecture 

Here, we propose the MSAT, a system for automating the LP/OP thereby 

reducing the manpower burden for an employing unit.  This system would leverage 

powerful modern computing technology, and should be able to be implemented at the 

lowest levels of combat units within the military due to its low cost and ease of use.  Such 

a system consists of sensor nodes, an application server, and mobile devices for 

interacting with the system.   

a. Sensor Nodes 

To build MSAT, a sensor node is needed that can perform as the backbone of the 

system, acting as the primary means of alerting the operator to enemy activity.  The 

sensor node itself must satisfy several specific criteria in order to be a viable option for 

incorporation into the system.  First, the sensor node must contain sensor modalities 

capable of intrusion detection into a tactical area of operations (TAOR) and target 

classification upon detection specific enough to satisfy the requirements of the 

SPOTREP.  We determined, through research of modern sensor system implementations, 

early in the planning of the system’s design that the most useful sensors would likely be 

passive infrared (PIR) sensors, cameras, seismic sensors, and acoustic sensors, as well as 

a global positioning system (GPS) receiver for determining sensor location.   

Second, a system that already had a threat classification algorithm in place (i.e., 

the ability to track targets through the sensor field) would be preferred.  Furthermore, 
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processing should be done locally (i.e., onboard the sensor nodes) rather than centrally, in 

order to support expanding the number of nodes without putting strain on the entire 

network due to increased packet transfer and latency due to insufficient bandwidth across 

the network.  A scalable network that can survive the destruction and addition of nodes, 

without disruption and failure, is important when considering combat applications.   

Third, the nodes would need to be capable of reliably communicating tracking 

information to the system operator utilizing an intuitive UI.  To do so, the sensor node 

would need to utilize the TCP/IP protocol to transfer data packets, thus enabling threat 

and tracking information to be transferred to a monitoring device, in the hands of an 

infantryman, that displays the sensor field updates on a suitably designed UI.    

Fourth, the sensor nodes would need to be capable of autonomous network 

formation for ease of use in combat.  Network formation and operation should be 

decentralized in order to increase the survivability of the system in the event of 

destruction by hostile forces.  Further, the network of sensors should be as impervious of 

exploitation by the enemy as possible should nodes be captured or the network 

interconnecting the nodes by detected and monitored by the enemy. 

Fifth, the overall system would need to be inexpensive enough to be fielded in 

large numbers by infantry troops and in quantities great enough to enable useful 

battlefield automation down to the tactical level.  The sensor node itself would also need 

to be inexpensive, preferably significantly cheaper than the purpose-built sensors 

currently used by military.  

Finally, the nodes would need to be light enough to be carried over long distances 

by dismounted infantry, who themselves would likely be carrying heavy personal combat 

loads. They would also have to utilize wireless communications so as not to force the 

warfighter to manage unwieldy cables between nodes. The nodes would also need to 

utilize an internal power source and have a life-cycle of at least fourteen days in order to 

be utilized tactically in combat.  

In light of these criteria, a variety of options were examined for possible use. The 

first was creating custom sensor nodes that would satisfy the above requirements utilizing 
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commercial SBCs (e.g., RaspberryPi, BeagleBone), microcontrollers, and different types 

of sensors.  This method would require intensive hardware design and engineering and 

the creation of complex communication protocols that would enable the nodes to 

establish an ad-hoc wireless network and autonomously share information between 

nodes.  Though it was believed possible, the level of complexity required for these tasks 

was determined to be outside the scope of this thesis.  Thus, existing hardware requiring 

little modification would be required for use in the MSAT system. 

In summary, we sought a sensor node system that incorporated multiple onboard 

sensor modalities to perform a locally executed threat classification algorithm, capable of 

autonomous network formation and decentralized operation, with the ability to interface 

with a variety of handheld devices through the ubiquitous TCP/IP protocol.  Additionally, 

the sensors needed to be low-cost for widespread use throughout the military, lightweight 

to facilitate portability, and wireless in order to be practical.  Finally, the sensors should 

have an onboard power source making them capable of operating in the field for 14 days.   

b. Mobile Devices 

The United States military has increasingly used mobile devices in training and 

operations, and the Army plans for these multi-purpose personal handhelds (e.g., 

smartphones and tablets) to take a central role in battlefield communications in the future.  

There has been a movement to develop many different applications for use on these 

devices to satisfy varying mission requirements [43].  Though the military recognized the 

utility of mobile devices and the importance of developing applications for these devices, 

they did not decide upon a single model, make, or operating system to employ in all 

cases.  Therefore, running the same software application across a diversity of devices 

presents itself as a major challenge.  This challenge is due to the fact that different types 

of devices are programmed in different programming languages—for example, most 

native Android applications are coded in Java, while most iOS applications are coded in 

C# [43].  Also complicating the task, devices may have a different operating system, or 

operating system version, and hardware characteristics that make running a universal 

application complex. 
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Recognizing the multitude of different devices on the market today and in use 

across the Department of Defense, we decided that we wanted the MSAT system to be 

compatible with the widest range of devices.  Due to hardware and operating system 

differences already identified, the task of creating separate native applications for the 

myriad of devices was determined to be an impractical approach for our research.  

Instead, we wanted to be able to write our program once and have it run on the majority 

of mobile devices.  “Write once, run anywhere” is a commonly referred to goal in 

software engineering and the introduction of HyperText Markup Language 5 (HTML5) is 

purported to assist web developers in achieving that goal [50].  To promote 

interoperability between the widest variety of mobile devices and the sensor network a 

web-based user interface was proposed.  A web-based front-end would enable the 

greatest possible code reuse and achieve compatibility with both Apple and Android 

devices while limiting the impact on development manpower resources.  This cross-

platform capability comes from standards implemented across Internet browsers that exist 

on mobile computers [43].  Web applications written in HTML5 have the capability for 

both online and offline application operations [43].  The overall layout proposed is a 

web-based interface written with HTML5, utilizing both JavaScript for functionality and 

cascading style sheets (CSS3) for styling.  Based on our research of web development 

and the ease of accessibility to online communities and resources, we decided that a web 

application would be the most appropriate design for MSAT. 

The user interface to the system would need to enable the greatest possible 

usability for operators in stressful combat situations, and provide the greatest degree of 

situational awareness.  A usable system for our military use case would be appropriately 

defined as, “the effectiveness, efficiency, and satisfaction with which specified users can 

achieve specified goals in a particular environment” [51].  This would need to be 

thoughtfully considered throughout the developmental process, so that the focus would be 

maintained on the end user, the infantrymen, who would utilize the tool.   

The user interface to MSAT should facilitate the greatest degree of situational 

awareness possible on the battlefield.  To enable this, the main component of the 

interface would need to be a map.  The map should be capable of being scrolled, zoomed, 
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and rotated, similar to the capabilities of a variety of mapping applications available on 

the Internet today.  Next, the interface would need to overlay sensor nodes on the map.  

Finally, the interface should give alerts to the operator of threats in the sensor field.  To 

communicate intrusions into the sensor field, the interface would need to display visual 

indicators of intrusions, such as flashing graphics where intrusions occur, or lines 

displaying the tracks of targets moving through the area.  Redundant alerts would 

enhance monitoring capabilities; thus, audible alarms and vibration would be 

incorporated whenever possible, with the option of turning these features off if the 

tactical situation called for their silence.  To allow threat classification through use of the 

system, a pop-up window would provide video or still images of intruders, in addition to 

other information regarding the target provided textually that the system can possibly 

provide using its multiple sensors and threat classification algorithms.    

Additional features of the user interface would contribute to enhancing situational 

awareness.  The system would track and plot friendly positions on the map graphically.  

The system would also provide chat functionality for communicating with adjacent team 

members and units.  This would be useful for communicating enemy information gleaned 

from the system to friendly forces.   

Figure 2 depicts a proposed wire/straw-man frame of what a usable interface 

would look like for the MSAT system, utilizing all the concepts that were previously 

discussed as requirements for the system. 



 34

 

Figure 2.  UI Wire Frame 

The wire frame aids a web designer in articulating a vision of what the product 

may look like.  Our focus is on maximizing the real estate of the map layer (i.e., gray 

background) and to keep reoccurring tasks, integrated as buttons, in the corners of the 

web application so that they are easily accessible by the user and not a hindrance to the 

users’ observation of the sensor field.  Once a button is triggered, the resulting action is 

imitated by a dashed line with an arrow, which shows where the pop-up container will 

populate on the screen and the title of its content. 

c. Application Server 

In order to facilitate the write once, run anywhere philosophy of the web 

application written in HTML5, JavaScript, and CSS3, an application server would have 

to be implemented through the use of an already existing web server application code 

base or the creation of a custom one.  Another anticipated requirement is that in order to 
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serve the application’s dynamic content to user devices, an application server must be 

capable of receiving and responding to Asynchronous JavaScript and XML (AJAX) 

requests.  AJAX can be best viewed as a group of tools that allows asynchronously 

updating user web pages.  These tools include: standards based presentation through 

CSS3, dynamic display and interaction through the Document Object Model (DOM), 

data interchange and manipulation using XML (Extensible Markup Language), 

asynchronous data requests through the XMLHttpRequest object, and JavaScript which 

brings all these together through its multi-paradigm programming language [52]. 

d. Overall System Design 

Figures 3 and 4 illustrate the proposed logical and physical network topology.   

 

Figure 3.  Logical Network Topology 

The logical topology depicted in Figure 3 illustrates the data flow that occurs 

from the sensor field, through the application server, and ultimately to the client device.  
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This is a high level view that suggests what possible technologies that may be applied to 

the MSAT system. 

 

Figure 4.  Physical Network Topology 

The physical topology depicted in Figure 4 highlights the interconnections that 

may occur from the sensor field, through the application server, and on to the tactical 

client’s device or to the remote client’s device.  This, like the logical topology diagram, is 

a high-level view depiction of the technologies proposed for the architecture of the 

MSAT system. 

2. Possible Use Case and Employment 

Here, we present several potential use-cases for the proposed MSAT system, 

covering a diversity of common combat scenarios faced by infantry units. 
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a. Ambush 

Utilized by an infantry unit conducting an ambush, MSAT would provide early 

warning of an approach, into the sensor field.  It would also provide the direction of 

approach and possible disposition, depending on the number of discernable tracks 

created.  This would aid in the prevention of the erroneous triggering of ambushes, by 

neutral or friendly forces, through early notification of an intrusion in the sensor field and 

allowing the human to make a classification, via camera, earlier.   

 Utilized in an ambush role, as shown in Figure 5, sensor nodes would be placed as 

far out as possible on the flanks of the ambush position to facilitate the earliest warning 

of enemy presence.  Additionally, nodes would be placed in the staging area, doctrinally 

known as the operational rally point (ORP), where extra equipment is often dropped by 

the unit and is the site for linkup after actions on the objective.  The ORP may be left 

completely unmanned, and sensor nodes would give warning of enemy compromise of 

the position. 

Ambushes can require units to occupy ambush positions for long periods of time 

while waiting for an enemy whose time of arrival is uncertain.  This can result in 

boredom and complacency that leaves a unit unprepared when the enemy does arrive.  

Sensor nodes that alert personnel to enemy presence early through a user interface on a 

handheld device can refocus the attention of the entire unit, and use of the chat can allow 

for last minute coordination within the unit without breaking the silence an ambush 

necessitates. 
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Figure 5.  Ambush Scenario 

b. Reverse Slope Defense 

A reverse slope defense utilizes the concept of mass surprise fires to destroy the 

enemy by drawing him into an engagement area that silhouettes him against the slope of 

a hill after crossing an inter-visual (IV) line or ridgeline.  This IV line (shown in the gray 

lined area) prevents the unit conducting the defense from visually observing the enemy 

before he enters the engagement area.  To provide early warning of an advancing enemy, 

sensor nodes can be placed on the other side of the IV line.  This avoids the necessity of 

placing personnel forward of the IV line and beyond supporting arms range of friendly 

forces, and possibly also masking friendly fires upon enemy contact.  Three squad battle 

positions are depicted in Figure 6. They are focused on engagement areas, which are then 

mutually supported by sensors. 

Enemy
Engagement Area

Support Assault

Staging Area
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Figure 6.  Reverse Slope Defense Scenario 

c. Urban Defense 

Small units can establish defensive positions in urban environments.  Such 

environments are characterized by tightly-packed, multi-storied structures that create 

covered and concealed avenues of approach.  Alleyways, sewers, trenches, rubble from 

damaged buildings, and rooftops can all be utilized by a clever enemy to safely close with 

friendly forces, where fragmentation grenades can then be thrown into friendly positions 

without ever having to expose themselves directly to small-arms fire.  Sensor nodes could 

be littered, possibly covertly with special operations forces or overtly using indirect fire 

techniques leveraging the robustness of the UGS device design, through these areas to 

give forewarning of such enemy infiltration before coming within hand-grenade range.  

Shown in Figure 7 is a platoon battle position, in an urban environment, that is supporting 

its position by employing the sensors in the surrounding dead space (i.e., unobservable 

from the friendly position). 
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Figure 7.  Urban Defense Scenario 

d. Tactics, Techniques, and Procedures for Employment 

In order to effectively employ the sensor field, unit leaders will conduct a 

reconnaissance of the area, prioritizing node placement based on dead space locations 

(i.e., unobservable terrain), likely avenues of approach, and natural lines of drift (i.e., 

terrain’s tendency to influence movement).  Patrols would then be dispatched to emplace 

the sensor nodes in their desired locations.  Patrols should be organized into two 

elements—the node emplacing team and the security element.  The node emplacing team 

will consist of at least a buddy pair—one individual carries the sensor nodes in a load-

bearing pack, while the other retrieves the nodes from the pack and actually emplaces 

them.  The security element provides protection and over-watch for the emplacing team, 

preventing enemy interference with the node emplacement.    
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3. Testing Plan 

We use an incremental approach to testing the MSAT system, where the 

individual components of the system are tested, as they are developed.  First we focus on 

the sensor nodes’ ability to reliably detect and classify threats and then transfer that data 

from the sensor field.  Tests are conducted to determine the reliable range in which the 

nodes can communicate to each other, to develop repeatable deployments of the system.  

The sensor field is tested with various wireless access points, which will provide a means 

to back haul the information from the sensor field to the application server.  Testing is 

conducted with sensor field deployment in different environments (e.g., overhead cover, 

thick vegetation, light vegetation, pavement, low grass, and tall grass), to determine best 

practices for employing the devices and identify impacts on the system. 

Second, we test the application server’s ability to process the node information, 

parse the information into a transferable data packet, and handle multiple connections to 

clients.  The application server is tested, in a lab setting, to determine capabilities of 

throughput, as well as the amount of concurrent client connections that can be handled 

reliably.  The application server is tested as part of the MSAT system, in a field 

environment. 

Third, we test the user interface and responsive design on multiple devices.  The 

design is tested with various browsers, devices, and operating systems.  This testing is not 

meant to be exhaustive of all devices, due to time and monetary limitations, but is 

intended to show the capabilities of a RWD that is developed with mobile platforms in 

mind. 

Finally, we conduct a live field experiment, utilizing the system as a whole.  This 

will provide an opportunity for operators to employ the system in a military scenario, 

with the objective being to determine when a person has entered the sensor field and to 

provide a SALUTE report based off the observations. 

C. CONCLUSION 

In this chapter, we discussed the LP/OP—its uses, its limitations, and its 

requirements as set forth by the Marine Corps.  We showed how the LP/OP is a 
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battlefield task well-suited for automation, and how the United States military’s growing 

interest in mobile devices on the battlefield can be leveraged to create a flexible tool for 

infantry units to conduct surveillance and intrusion detection on the battlefield.  The 

concept for such a tool, which we coined MSAT, was presented, including the system 

components and architecture.  Finally, several possible use-cases and methods of 

employment were discussed, and a testing plan was laid out.  In the following chapter, we 

present the actual development of the reference design for MSAT, the detailed test plan 

based on the reference design and test results of its individual components, and the 

performance of the system in a field experiment. 
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IV. MSAT IMPLEMENTATION AND TESTING 

To show the possibility of using computer systems to automate the LP/OP for 

small infantry units, we built a functioning prototype, MSAT, consisting of COTS 

components, existing sensor nodes, and custom-built application software.  We first 

selected an appropriate sensor node to act as the backbone of the system, and then we 

tested the capabilities of these sensors before incorporating them into a system that 

satisfied our use-case.  Next, we built a software application that allowed for warfighters 

to interface with the sensors, enabling them to utilize the sensors for surveillance, 

intrusion detection, and target classification.  We then tested the capabilities of this 

software isolated from the rest of the system.  Finally, we built a mobile tactical network 

that integrated all of the components into a complete system for field use, and we tested 

the capabilities of the system in a mock combat scenario.   

A. SENSOR NODES 

We needed to incorporate sensors into our prototype in order to detect intrusions 

in the tactical area of operations (TAOR) and classify these intrusions, alert human 

operators using the system and enable them to use the system to gain battlefield 

situational awareness.  In order to most effectively execute this task, multiple modalities 

of sensors would be required, and the sensors would need to be able to communicate 

environmental events wirelessly and in near real-time, with minimum effort or training 

required on the part of the operator.  WSN nodes could accomplish all of this with 

multiple onboard sensors capable of autonomous network formation and a protocol for 

sharing gathered environmental information across the network, such that the information 

could be processed and presented in a human-readable format through a user-interface.  

Such sensors would serve as the backbone of MSAT.   

Building such a sensor node from scratch would be too complex a problem for the 

scope of this thesis.  Therefore, we sought an existing solution.  The ADAPTable sensor 

system (ADAPT) Smart Munition prototype, built by DARPA, provided an acceptable 

solution and was therefore utilized as MSAT’s sensor node.   
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1. ADAPT Smart Munitions 

The ADAPT Smart Munition was born out of ADAPT, a DARPA program that 

began in 2012 with the purpose of building UGS systems of COTS technology that could 

serve as an intelligent replacement to conventional munitions, such as cluster bombs and 

minefields [53].  Such nodes would be capable of autonomous network formation and 

communication with command and control (C2) assets, after being hand placed, 

airdropped en masse, or delivered via artillery fire.  We decided to utilize this prototype 

sensor in a manner other than originally intended by DARPA, by integrating them into 

our system and using it as the key technology of MSAT to directly support the infantry 

warfighter at the tactical level for surveillance purposes.     

2. ADAPT Sensor Node Prototype Specifications 

a. Core Hardware 

The ADAPT Sensor node was built around the ADAPT core, a breadboard 

containing a Qualcomm MSM8960 Snapdragon System-on-a-Chip Dual Core processor, 

graphics processing unit, GPS Processor, and 3G/4G modem [53].  Cellular, GPS, Wi-Fi, 

and Bluetooth antennas were also integrated into the ADAPT core.  The processor is 

capable of running at 1.5 GHz per core [54].  The ADAPT board utilizes a removable 

MicroSD card for persistent storage [53]. Various views of the sensor node are provided 

in Figure 8. 
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Figure 8.  ADAPT Sensor Top, Side, and Cutaway Views, from [53] 

b. Sensors 

The ADAPT node contained a collection of different sensors. Each node utilized a 

PIR positioned at the front of the housing, capable of detecting intruders from a range of 

a few meters out to approximately 50 meters for larger targets such as a vehicles, and out 

to 20 meters for smaller targets such as human traffic.   

Additionally the ADAPT sensor node contained a physical tripwire.  The tripwire 

was held in place magnetically to the side of the node housing, and the wire, which was 

made out of string, could then be unraveled to its desired length.  The tripwire system 

was designed so that when the tripwire was disturbed, the magnet connected to the end of 

the wire would pull apart from the magnet on the node, and the actuator would trip, 

causing a detection event on the node.   
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The ADAPT sensor node also contained two seismic sensors, an acoustic sensor, 

and two cameras mounted on opposite sides of the sensor node.  The cameras were 

intended to be utilized for the capturing of still images and video.   

c. Housing 

The ADAPT sensor node consisted of a cylindrical, hard plastic housing with a 

radius of approximately 2.5 inches and a height of approximately 4 inches.  Rubber seals 

were used at all of the connections, where the plastic components met, in order to make 

the nodes water-resistant.   

d. Operating System 

Each ADAPT node ran a version of the Android operating system custom built 

for the ADAPT program, optimized for low-power consumption in order to increase the 

operating lifecycle of the nodes.  This modified, headless Android operating system was 

built on top of the Linux kernel, and utilized components built with the C programming 

language [53].   

e. Node Software 

Software running on the operating system of the ADAPT sensor nodes enabled 

the key functionality.  The Shared Information Space (SIS) process enabled data sharing 

between nodes, through the running of a small-footprint database.  The Scheduler and 

synchronous/asynchronous (SAS) medium access protocol processes were responsible for 

ground radio communication between nodes (i.e., the medium access control (MAC) 

policy).  The RTC Real Time and System Clock Synchronization was a process 

responsible for clock management.  Other applications were responsible for other key 

tasks: loc computed node locations, pir was responsible for running the PIR sensor while 

libpir.so handled detection data from PIR-triggered events, seismic processed events from 

the seismic sensors, and libtrack.so handled tracking data.   

Additionally, the operating system contained drivers for the field programmable 

gate array (FPGA), the 900 MHz ground radio, the geophone, and the PIR sensors.  An 
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important note is that a functioning driver for the video cameras on the nodes did not 

exist [53]. 

f. Power Consumption and Duty Cycle 

The ADAPT nodes were powered by rechargeable lithium-ion battery packs 

housed at the bottom of every node. The Android operating system allowed for power-

aware operation, and the management of different power states in an effort to conserve 

energy.  The ADAPT node operated with six different states of power usage.   

The nodes were intended to spend most of their time in the vigilant power state, 

defined as having the PIR sensor enabled, the processor sleeping, and the ground radio 

listening on only one receive slot.  In this state, the nodes simply wait for an intruder to 

enter the field and listen for events from their neighbors.  While doing so, the nodes 

consumed 80 mW and were capable of operating for an estimated 62.5 days.  

In the characterization state, the node had its PIR sensor on and also turned on its 

seismic software for classifying threats.  This more-aware state was entered when 

neighbor nodes transmitted knowledge of local intrusions so that the sensor node could 

be ready to more quickly detect and characterize threats.  In this state, the sensor node 

was also listening on one receive slot.  The sensor nodes consumed 412 mW and could 

operate an estimated 12.1 days continuously in this state.   

The nodes entered the tracking state after the PIR sensor was tripped by an 

intrusion.  In this state, all of the sensors were turned on, Wi-Fi was enabled in order to 

relay information directly back to the monitoring station, and the ground radio broadcast 

slots were utilized in order to transmit detection and tracking information directly to 

neighbors via the SAS protocol, discussed in the section below.  In tracking mode, the 

ADAPT nodes utilized 568 mW of power and could operate for an estimated 8.8 days 

continuously.   

On the node’s initial startup, it would enter the GPS-on state.  This state would 

stay active for one hour, to allow for the network to stabilize and acquire locations for all 

the neighbor nodes. Periodically, the node would activate its GPS-on state for ten 
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minutes, every four hours.  In this state, nodes used 804 mW of power. If the nodes were 

in a GPS denied environment, they would derive a center of mass calculation from 

neighbor nodes. 

In the video-on state, which the ADAPT nodes entered after beginning to track an 

intrusion so that video or images could be used to capture the target and be transmitted 

back to the base-station for use in classifying a threat by a human in the loop, 1556 mW 

were consumed by each node.  Nodes in this state also had all of their sensors running, 

their Wi-Fi enabled, and utilized their ground radio broadcast slots.  They could operate 

in this state continuously for 3.2 days.   

Finally, in the full power state, defined as the dual-core processor running at full 

capacity, all sensors and video on, and all radios being used to simultaneously transmit 

packets, the ADAPT nodes utilized 3156 mW of power.  It would not be likely that the 

sensors would ever achieve this state, but this figure is included here in order to give 

perspective to the power consumption of the other operating states.  Throughout the 

entire testing process with the nodes, they did not run in this hyper-vigilant state, but 

were instead in a testing/full mode where all radios were constantly enabled.  This 

provided an operational lifetime of approximately 1.6 days [53]. 

3. ADAPT Sensor Node Operation 

a. Communication Protocol 

Communication between ADAPT nodes was conducted wirelessly via their 

onboard 900 MHz ground radios, utilizing the SAS MAC protocol [53].  This protocol 

utilized time division multiple access (TDMA) in combination with frequency division 

multiple access (FDMA) in order to conduct scheduled communications.  This meant that 

the frequency spectrum of the SAS radios was divided into sub-frequency slots, and those 

slots were further subdivided into different time slots of 4.6 to 8.6 milliseconds in 

duration [53].  Nodes, at startup, would randomly select a slot to begin listening on. They 

would then scan the other slots and advertise their listening channel. Once a neighbor 

introduced them on their listening slot, they would jump to that neighbor’s listening slot 

and complete the three-way handshake. After this neighbor establishment has been 
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completed, the node would then return to a state where they only monitor their slot, thus 

reducing the radio duty cycle of the nodes to less than one half of one percent [53], 

meaning nodes would use their radio less than one percent of the time, thus saving power 

and prolonging the nodes’ life cycles. A depiction of the neighbor formation is shown in 

Figure 9. 

 

Figure 9.  Network Formation, from [53] 

Data was transmitted in protocol data units (Figure 10) of variable length, called 

bundles.  Each bundle could contain one or more packets of various types and lengths, 

but the bundle had a 230 byte limit [53]. 
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Figure 10.  Bundle Format, the Data Protocol Unit for SAS, from [53] 

b. Network Formation 

The ADAPT nodes were capable of autonomously forming a WSN, making them 

suitable for use with MSAT since they would not need to be manually configured by 

warfighters employing them on the battlefield.  To form this WSN, the nodes had to 

complete several tasks, to include neighbor discovery, time synchronization, and location 

determination. 

To discover neighbors after being emplaced, a three-message handshake was 

used, shown in Figure 9. The neighbor node completed the handshake, by transmitting a 

final acknowledgment.  The sharing of already-discovered nodes with new neighbors 

during the discovery process was designed to form the network such that an exponential 

growth of handshaking was not needed; while nodes would initially have few entries in 

their neighbor table, new neighbors would rapidly be discovered through neighbor-

sharing [53].  Each node was limited by the SAS protocol to a maximum of eight 

neighbors.   

Since the SAS protocol utilized TDMA and communication was scheduled, 

meaning that nodes received and transmitted only on a limited number of specific time 
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slots in order to minimize power consumption by the radio, achieving time 

synchronization between nodes was vital.  The initial time estimate per node was 

achieved through the GPS receiver on the node.  This method of achieving an initial time 

fix was only partially reliable due to the known inaccuracy of the ADAPT GPS receiver 

onboard the node [53].  Therefore, an over-the-air (OTA) time synchronization algorithm 

via the ground radio protocol SAS was also utilized [53].  Due to inter-node clock drift, 

an algorithm using clock error and clock drift rate fields in the ground radio packet 

header enabled the measuring of inter-node clock drift and the resulting necessary time 

slot adjustments [53] to ensure the continuing ability to communicate between nodes.  

Every four hours, the nodes were programmed to obtain new time synchronization via 

GPS or OTA on ground radio [53].   

As part of forming the network, nodes needed to obtain position fixes in order to 

report their locations to neighbors and any C2 base stations being monitored by human 

operators.  To be useful, threat and detection data gathered by the nodes also depended on 

the nodes accurately obtaining positions.  Nodes obtained a position fix in one of two 

ways: using the internal GPS receiver or estimation based on neighbor locations.  Nodes 

with access to GPS satellites would obtain a fix upon being powered on and would 

remain in the GPS-on state for an hour, before transitioning to a less frequent GPS check.  

In a GPS-denied environment, (i.e., due to being underground, indoors, or jammed due to 

enemy activity) nodes obtained estimated locations by conducting a center-mass 

calculation using the positions of its neighbors [53]. 

c. Threat Detection and Tracking 

Despite the variety of potential onboard sensors, the ADAPT nodes were adopted 

for use within MSAT at a stage in the prototyping process when the nodes relied 

exclusively on the PIR sensor for threat detection and tracking.  This meant that there was 

no software yet developed for utilizing the seismic sensors and there were no functioning 

drivers to be able to utilize the cameras.   

PIR sensors work by electronically sensing infrared light given off by an object 

moving through the sensor’s field of view.  Any object, with a heat differential in respect 
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to the surrounding ambient temperature, moving in front of the node’s PIR sensor would 

trigger a detection event.  Upon a detection being triggered by the PIR sensor, the node 

would process the event—determining whether this detection was part of a sequence of 

detections from other nearby nodes (i.e., a track) and which neighbors to share the new 

detection with based on sharing-parameters set on the nodes.  Nodes were set to send 

detection and tracking information with neighbors located within a 100 meter radius of 

the event.  

Three sequential detections within the local vicinity (i.e., 100 meter radius) would 

prompt the creation of a track by the detecting node.  A detection by a node with a track 

already existing in the local area would prompt the extension of the existing track: the 

bearing, speed, and location of which would be processed locally by the detecting node 

and shared with its neighbors.   

Detection and track timeouts could be adjusted within the SIS database process on 

each node, so that nodes would drop detections and track records from their databases 

after a certain time period had elapsed.  By default, detections were set to timeout after 

one minute and tracks after ten minutes.   

d. Data Sharing 

In the ADAPT WSN, nodes did not have a global knowledge of the network and 

only shared data with direct neighbors.  This reduced the processing demands that would 

have been created should there have been the requirement of maintaining a large routing 

table and implementing a corresponding routing algorithm.  In order to propagate 

information, nodes would only send information to neighbors that the neighbors defined 

as interesting.  Interesting information was defined as detections within a 100-meter 

radius of the neighbor, or a track that had encroached into its area.   

Each node maintained the locations of its neighbors, the local detections, and 

tracks in separate tables located in the SIS database process running on its operating 

system.  New information received from neighboring nodes via the SAS ground radio 

protocol would be inserted into the appropriate table in the database.  Each node also 

maintained tables of instructions from its neighbors regarding what kind of information 
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each neighbor found interesting, so the node would know what information to send to its 

neighbors.  In such a manner, information would propagate from one edge of the network 

to the other, one hop at a time.  This precluded the need for a routing algorithm and end-

to-end message addressing.  It also resulted in redundant messaging, which provided 

network resilience in the face of possible jamming, destruction, or malfunction of 

individual nodes [53]. 

Additionally, nodes configured to utilize Wi-Fi could be programmed to send 

their SIS data (detections, tracks, and node locations) over an 802.11 link to the specified 

IP address of the base station, via port 10000 on the base station machine.  This would 

allow for a human in the loop to monitor the entire sensor field.  The operator could also 

issue instructions to the nodes via the SIS process, such as instructions to perform a 

simulated detonation by flashing the nodes’ onboard lights, or to modify tables or data 

entries. 

4. ADAPT Sensor Nodes Limitations 

a. Inoperative Cameras 

As previously mentioned, the software drivers that would have allowed for the 

use of the two cameras on board each node were not completed.  Picture and video could 

be captured and stored locally on each node, via a workaround method, but this data 

could not be sent over the network to the base station for monitoring in real-time, making 

it of little use for surveillance and security.   

b. Undeveloped Threat Tracking and Classification Algorithm 

Software developed for the ADAPT nodes, at the time of MSAT’s 

implementation, only allowed for intrusion detection based solely on PIR triggering and 

limited tracking based on sequences of detections.  The nodes therefore had very limited 

ability to classify and analyze the detected intrusions into the sensor field [53].  

Classification would therefore be limited to what could be provided by tracks, such as the 

estimated speed and bearing of the intruder, as well as the number of tracks created, 

which could possibly give an indication as to the number of intruders.   
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5. Testing the Adapt Sensor Nodes 

a. Summary of Action 

We traveled to Aberdeen Proving Grounds, 28 April–9 May 2014, to support 

testing and demonstration of the prototyped wireless sensor network being developed by 

the DARPA ADAPT program.  All tests were conducted at the location of an old aerosol 

testing facility that was being utilized by Edgewood Chemical Biological Center (ECBC) 

staff.  We worked closely on this project with several contractors working on the ADAPT 

program, as well as with the project manager for ADAPT. During our stay at Aberdeen, 

before the final demonstration to the Vice Chairman of the Joint Chiefs of Staff, Admiral 

James Winnefeld, we conducted many tests of the ADAPT nodes that yielded interesting 

results pertinent to the reliability and employment considerations of the system. 

b. Testing 

We conducted daily tests of the ADAPT WSN while at Aberdeen, to include four 

tests of over 60 nodes.  All tests were organized in a similar manner.  For each test, we 

hand-emplaced the nodes (shown in Figure 11) around the building, forming a sensor 

field capable of tracking an intruder walking around the building.  The building was four-

stories high and the wireless access point for the system was positioned on the building’s 

roof.  The terrain for the test consisted of slightly rolling hills to flat ground, with 

medium to high grass in the area immediately surrounding the building.  Further away 

from the building (about 50 meters), the vegetation turned heavily wooded, with high 

trees and rich foliage.  A flat, paved road ran straight north from the building, with grass 

along the edges of this road, giving way to densely vegetated woods 25 meters away from 

the road.  Sensors were emplaced along both sides of the road to a distance about 200 

meters up the road, away from the edge of the building.  The testing site field measured 

approximately 800 meters in length oriented north to south, and 400 meters in width from 

east to west.  Nodes were spaced, along a likely avenue of approach within this field, 

approximately 20 meters apart from each other and with varying density depending on 

the micro-terrain.  The weather during testing ranged from heavy rain, to overcast, to 

sunny and clear; the wind ranged from heavy to calm.  All testing was conducted during 
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daylight hours. The testing site with a typical sensor node deployment, indicated by the 

blue triangles, is depicted in Figure 11. 

 

Figure 11.  Aberdeen Test Network Formation with Neighbor Links 

We emplaced the sensor field one time each day, but during that period ran 

several iterations of remotely bringing the network down and allowing it to autonomously 

reform.  This capability to remotely bring the network up and down did not exist prior to 

testing in Aberdeen, but we developed a process that allowed for this capability using 

TCP over the 802.11 network.  The ADAPT team also experimented with the 

transmission power of the SAS radios on board the nodes.  Early in testing, we had tried 

turning the transmission power down to 15dBm, but later increased the transmission 
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power to 23dBm as it yielded more consistent transmission of detections amongst the 

node’s neighbors.  

We also ran several iterations of creating tracks through the sensor field each day.  

We took turns acting as intruders, creating tracks for the sensors as we walked around the 

building and along the northern road.  For the first week, we tested only a single intruder 

at a time, creating a single track.  During week two, we introduced a second intruder and 

tested the system’s ability to track two simultaneous targets.  During this second phase, 

we attempted to keep the two tracks as discrete as possible so as not to confuse the 

system in the early stages of development, since the system’s tracking capability has not 

yet been refined.  

We also tested the ability of the system to remotely kill an intruder as it moved 

through the sensor field.  This was accomplished through a process that allowed the 

operator of the system to draw a radius around a geographical location, in which all nodes 

detonated if a track was created inside the circle.  Turning on the nodes’ camera flash and 

LED light simulated the detonation of nodes—the nodes did not have a munitions 

payload or any means to detonate the payload.  

As the nodes’ camera drivers did not function properly, rendering the cameras 

impractical for our use, two IP cameras were placed in the field to provide a real-time 

visual-monitoring capability of the sensor field, at the command center.  One camera was 

placed looking north along the road and the other was placed south of the building.  This 

provided the capability to see the intruder as it moved through the sensor field creating 

tracks.  It also allowed the operator to visually observe the flashes of nodes as they were 

detonated in the simulated killings of intruders.  This provided immediate feedback on 

the accuracy of the detonation.  

As we tested each day, we made refinements to the positioning and orientation of 

the nodes based on the capabilities and limitations of the system as they were learned.  

Considerations for the positioning of the nodes included distance between neighbors, 

radio transmission power, and the orientation of the PIR sensors in relation to the terrain, 
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vegetation, and neighboring nodes.  The sensor network operator also adjusted the timing 

and radius of the detonation for the simulated munitions as testing progressed.  

On the final day of testing, we conducted a demonstration for VIPs, which 

consisted of executing the events described above.  First, the network was allowed to 

autonomously form from a down state, with no links previously existing between nodes.  

Observers witnessed the time that it took for the entire network of nodes to obtain GPS 

locations, begin reporting to the sink node (i.e., COC), discover neighbors and form links.  

Next, two intruders walked through the field simultaneously, creating separate tracks.  

Finally, the WSN operator in the COC attempted to “kill” one of the intruders at two 

separate points along the route, each observable by a camera.  

c. Results 

Throughout testing, we observed that the autonomous formation of the wireless 

mesh network was quick and reliable.  On average, it took between 60 and 70 seconds for 

the first node to report to the COC after starting the network, 90 seconds for the first links 

between neighbors to be created, and four minutes for the entire network to be formed. 

On two occasions, ten nodes were purposely left in the off state and brought up after the 

formation of the network.  These nodes were able to autonomously form neighbor 

connections and integrate into the network with limited errors.  Physically emplacing 

nodes was a non-trivial task, and it took an average of 30 minutes for three people to 

emplace 63 nodes.  This was equivalent to a rate of .7 nodes per minute to be emplaced 

for a single person.  

All testing was done with the nodes in a testing/full state at all times—vigilant 

power mode was never utilized, as it had been too unreliable.  Also, all nodes were 

directly reporting via 802.11, requiring constant use of the Wi-Fi antenna.  This meant 

that due to high power consumption rates, life cycle times for the nodes was a maximum 

of two days, rather than the greater than 20 days that is desired by the ADAPT team, in 

fulfillment of requirements of the client.  

At the lower transmission power of 15dBm for the SAS radios, we observed that 

nodes in the southern portion of the sensor field had difficulty forming neighbor links. 
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This led to unreliable tracks that were often not continuous because of the difficultly of 

sharing detections between neighbors.  For this reason, even though tracks were still 

recognizable as single tracks to the human operator monitoring the system graphically, 

single tracks often registered in the system as multiple tracks.  By turning the 

transmission power up to 23dBm, we observed better neighbor connections between 

nodes and more continuous and reliable tracks.  

The environment had a major effect on the performance of the nodes.  Heavy 

rains that persisted for three entire days of testing subjected the nodes to flooding, and 

upon inspection we noted that the inside of some nodes had become damp after 

remaining out in the rain all day, with some being partially submerged.  The rain also 

affected the reliability of the PIR sensors, simultaneously degrading the ability of the 

system to form tracks and increasing false detections.  As one would expect with most 

PIR sensors, we also experienced the same reliability issues during periods of bright 

sunlight.  The best performance was achieved during overcast conditions.  High winds 

caused a proliferation of false detections, with the nodes generally performing better 

under calm wind conditions. Vegetation also was a problem—high grass and foliage 

swaying in the wind tripped PIR sensors.  After maintenance workers at the testing 

facility cut the grass around the building, we noticed far less false detections.  We found 

the reliability of the PIR to be heavily dependent on the environment; implementing a 

more refined detection system would require the use of multiple sensor modalities. 

Testing the network with two simultaneous intruders walking through the field 

yielded mixed results.  We discovered that the two tracks had to be very distinct, meaning 

separated significantly by time and space.  To get two clean tracks, we had to start the 

intruders at opposite ends of the field, and they could not cross paths at the same point in 

time, otherwise the tracks would become confused.  

The effectiveness of detonating nodes in order to kill intruders increased as the 

operator became more experienced with his timing, so this process requires a highly 

involved human in the loop. 
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Figure 12 is a screen shot from the COC that depicts the nodes (blue triangles) 

and a red track generated by a single intruder.  In this test, the track is broken/interrupted 

as the intruder walked around the corner of the building and the nodes could not associate 

the events from the previous detections and tracks, to the current ones being reported.  

This does not have a direct impact on the operator’s ability to determine that an intrusion 

is occurring, but does introduce ambiguity as to how many intruders are present and their 

direction.  If the operator is vigilantly watching the scenario unfold on a device, then it 

would be apparent, as the track stopped at a certain point and continued later on, that the 

tracking of the intruder was broken.  Figure 13 displays an unbroken track following a 

single target, while Figure 14 displays the tracks of two objects that started in different 

areas of the sensor field. 

 

Figure 12.  Broken Track Following One Person 
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Figure 13.  Continuous Track Following One Person 

 

Figure 14.  Continuous Track Following Two People 
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d. Conclusion 

The performance of the ADAPT sensor nodes during field testing validated the 

choice for their incorporation into MSAT, but also revealed shortfalls that would have 

implications for their inclusion in the automated surveillance system.  The sensor nodes 

generally met the requirements for use with MSAT: the nodes were low-cost, wireless, 

TCP/IP compatible, performed network formation autonomously, and executed basic 

detection and tracking algorithms.  However, the shortfalls of the nodes would present 

some difficulties.  First, the nodes relied solely on the PIR sensors for all threat detection 

and tracking.  This single sensing modality limited the likelihood of conducting any 

advanced threat classification with the system.  Second, the reliability of these PIR 

sensors was highly dependent on environmental factors such as vegetation, wind, rainfall, 

and lighting conditions, leading to unpredictable behavior and a high incidence of false 

positive detections.  Unpredictable sensor behavior would have the potential to confuse 

warfighters operating MSAT.  The effect of this shortcoming on the actual 

implementation of the MSAT prototype would be a system that forces the warfighter to 

rely more heavily on manually classifying intrusions reported by the sensor system 

through the use of video.  This reliance on video for manual threat classification would be 

further exacerbated by the existence of only a single functioning sensing modality on the 

sensor nodes, ruling out the potential for automating threat classification by using 

multiple sensors in collaboration.   

Having established the importance of video, the next obvious problem that would 

have to be overcome was the lack of functioning cameras on the sensor nodes.  To solve 

this issue, the MSAT reference design would have to incorporate separate cameras into 

the system in order to provide video feed for the warfighter, at least until functioning 

drivers were created that would allow for use of the internal cameras.  The effect of this 

modality is to rely on the ADAPT sensor field as a tripwire system calling the attention of 

the individual monitoring the field of interest to specific locations in that field. 



 62

B. APPLICATION SOFTWARE 

We designed an application to act as the interface between the sensor nodes and 

the warfighter using COTS mobile devices (Figure 15). In order to achieve our goal of 

interoperability with the widest variety of device models, and in keeping with the bring 

your own device (BYOD) philosophy of a military that has not yet decided on using a 

universal standard, we created an HTML5-based application utilizing the client-server 

model.  The building of our application was thus logically divided into two functional 

areas—the application server that would interface directly with the nodes and serve 

content to clients, and the client-side code that would execute on the users’ devices. 

 

Figure 15.  MSAT Physical Topology Diagram 
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1. Server 

MSAT’s application server was built to accomplish several tasks.  First, it would 

act as a traditional HTTP server, serving static content to clients.  Second, the server 

would interface with the sensor nodes, receiving data on node locations, intrusions, and 

targets as they were tracked through the field in real time.  Third, the server would 

process this data and serve it to connected clients in a human readable format through the 

user interface.  Fourth, the application server would facilitate tracking friendly positions, 

the sending of messages and reports on the network, and monitoring the sensor video 

feed. All of this functionality would be delivered for the purpose of maximizing 

situational awareness for the warfighter utilizing the system.  

a. Hardware 

To run our application server, we utilized a Lenovo ThinkPad T510 with a dual 

2.67 GHz Intel Core i7 CPU and 4 GB RAM running a 64-bit version of the Ubuntu 

12.04.4 LTS operating system.  This laptop contained a Centrino Advanced-N + WiMAX 

6250 Wi-Fi adapter by Intel corporation, compatible with 802.11 a/b/g/n, and a 10.8 volt 

Sanyo model 42T4791 6-cell lithium ion battery with 47520 mWh capacity.  This laptop 

was selected for its compatibility with the Ubuntu operating system, which was free and 

open-source, making it friendly for use as a development environment for prototyping.   

b. Version 1: LAMP Stack 

We initially attempted to build our application server utilizing a Linux, Apache, 

MySQL, PHP (LAMP) stack because of its open-source nature, widespread use on the 

Internet, and thorough documentation.  The LAMP server was installed on the application 

server laptop.  This server would provide connected clients with dynamic, real-time 

updates through Asynchronous JavaScript and XML (AJAX) requests.  To service AJAX 

requests from clients, a PHP script on the server queried for node information stored in 

the MySQL database.  The MySQL database contained three tables: locations, detections, 

and tracks.  In order to communicate with the sensor field and populate the tables on the 

server with the relevant information in real-time, we built an interface between the server 

and the sensor nodes.  Figure 3 depicts this implementation. 
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(1) Server-Sensor Field Interface 

We ran a SIS database instance on the application server machine and configured 

the sensor nodes to send their tables to the IP address of the application server on Port 

10000 over 802.11.  A Bash script was written which invoked an infinite loop that 

queried the SIS database, writing the results of the query into a text file on the server.  

After writing the results of the query to a text file, the loop invoked a Python program to 

parse the data contained in the text file into the MySQL database, utilizing the MySQLdb 

library as the interface between Python and MySQL.  Finally, the script cycled to the start 

of the loop to repeat the process. This kept the MySQL tables up to date with node 

information provided by SIS.   

(2) Data-Transfer between Client-Server 

The primary purpose of the application server was keeping clients updated with 

the latest state of the sensor field through the User Interface (UI) on the client mobile 

devices.  The state of the sensor field consisted primarily of node locations, intrusion 

detections, and tracks.   

The UI was designed as a single page application (SPA), meaning that clients 

were served the static HTML5 and JavaScript upon initially connecting to the Apache2 

HTTP server. The static content included the layout of the page and styling in the form of 

HTML, CSS3, map imagery of the local area, and JavaScript code that contained 

instructions for the client’s browser to execute. The dynamic content would be updated 

without having to reload the webpage. 

Through the execution of the JavaScript instructions in the client browser, the 

SPA dynamically updated changing node locations, detections and tracks as they were 

processed by the server and forwarded according to the JavaScript programming.  This 

was accomplished through implementing AJAX polling to retrieve the updates from the 

server.  Specifically, HTTP requests for sensor field updates were made to the Apache2 

server at a rate of every second using the native JavaScript function setInterval, which 

executed a function at specified intervals, and the XMLHttpRequest object, which 
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allowed for the creation of HTTP requests to the server originating from the client’s 

browser, without having to reload the client’s webpage.   

On the server, a PHP script was written to handle the HTTP requests from the 

clients.  When invoked by the client through the Apache2 server, the PHP script queried 

the MySQL database that contained the current state data for the sensor field.  The script 

then parsed the results of the query into JavaScript Object Notation (JSON) and returned 

the JSON object to the requesting client via the HTTP server.  The JavaScript on the 

client would then parse this information into a human-readable format generating the 

display of node locations, tracks, and detections as graphics on the map overlay.  As 

previously mentioned, this process was executed every second for each client connected 

to the application server through a persistent HTTP connection.   

The implementation of a LAMP server allowed for the building of an initial 

working prototype for MSAT, but performance limitations quickly became obvious.  

During testing while developing the application, the application suffered from severe 

latency, which resulted in a slow, unresponsive UI on connected client devices.  It was 

noticed that this problem grew noticeably worse as more clients simultaneously 

connected to the application server.  The cause for this latency was predicted to be the 

Apache2 server’s multi-threaded nature and the blocking characteristic of querying the 

MySQL database.  Not only did every client’s request for static content generate a new 

Apache2 thread, but each client generated HTTP requests at a rate of one per second 

while connected and each request spawned yet another thread by the Apache2 process 

running on the server.  Additionally, each AJAX polling request invoked a new MySQL 

database query through the PHP script.  Since the database queries were blocking, 

meaning that they were executed synchronously such that only one query could be 

executed at a time and all other threads had to wait in a queue to be serviced, the database 

querying manifested as a choke point on the server.  This choke point slowed 

responsiveness.   

Additionally, the LAMP-based application server lacked any video capability, as 

the cameras on the ADAPT nodes were not accessible due to non-functioning drivers.  

Simply meeting the demand of serving node data to connected clients stressed the server 
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beyond being usable, so the streaming of video to clients was not considered feasible 

without a major design change on the server.     

c. Version 2: Node.js Server 

To solve the performance issues of the LAMP server that rendered the application 

unusable, a complete redesign of the server was conducted utilizing different server-

software.  Node.js was adopted as the solution due to its asynchronous model of 

execution and its ability to create fine-grained networking applications through the 

JavaScript programming language.  Figure 16 is a diagram depicting how this was 

implemented. 

 

Figure 16.  MSAT Logical Topology Diagram 
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d. Performance Test: Comparison of Apache2 versus Node.js 
Implementations 

To determine which paradigm would provide the best performance, Apache2 and 

Node.js were compared in a benchmark test.  The results of this test were used to decide 

whether or not to utilize Node.js over Apache server, which had already displayed 

disappointing performance.   

The overall goal of the test was to collect quantitative data about the performance 

of the two servers designs under various loads.  This was an important step in 

understanding the capabilities and limitations of each technology and would aide in 

choosing the correct server model with regards to the web application portion of the 

overall system. Two different test scenarios were conducted for each server setup.  The 

first scenario tested the each server’s ability to serve a static web page to a large number 

of non-persistent client connections.  The second scenario tested each server’s ability to 

service a persistent connection where a large number of clients were simultaneously 

connected and continuously making HTTP requests of the server.  The later scenario 

simulated the use of AJAX for creating dynamically updated webpages. 

To conduct the test, we decided that it was more important to utilize a sterile 

direct, end-to-end connection between the simulation computer and the server rather than 

a more complex network.  During initial trials, it was recognized that testing on a 

wireless network introduced uncontrolled variables, where results varied and were not 

replicable.  Some of the problems in attempting to use a wireless network to precisely 

perform server load testing included the higher frame error rate due to the wireless 

medium and interference from nearby stations.  We also attempted to conduct the test 

over the Naval Postgraduate School intra-network with the server connected by wire.  

However, we noticed early in the trials that the results were skewed by current network 

conditions such as traffic intensity.  This intensity would ebb and flow throughout the day 

based on usage.  This made recreating the network conditions of each test nearly 

impossible.  In an effort to minimize the uncontrolled variables, we decided to create a 

simple network, utilizing an Ethernet connection between the load simulator and the 



 68

server.  This minimized the number of variables in the experiment, in order to allow for a 

strictly controlled test of the servers. 

We ran our server on a desktop computer with a 2.66 GHz Intel Core Duo 

processor and 2 GB of RAM.  We used 64bit Ubuntu 12.04 LTS for the operating 

system.  On our server machine, we installed two different server architectures.  The first 

was Apache2 and was configured to listen on port 3000.  We made no special 

modifications to the standard software.  We installed our Node.js server on the same 

machine.  Our Node.js server was custom programmed to serve our UGS application, in 

an asynchronous manner.  This was also configured to listen on port 3000.  Since both 

servers were configured to listen on the same TCP port number, only one server could be 

run at a time.   

After looking at various load simulation tools, we decided to use the Java-based 

JMeter, an open-source load generating software, to generate client requests.  We also 

decided to use the more powerful computer to simulate the client requests, because we 

anticipated that generating so many concurrent client threads would be a computationally 

intensive task. 

In order to setup the simple network, depicted in Figure 17, we statically assigned 

IP addresses to each computer’s Ethernet interface.  This was relatively simple to do 

using standard Linux networking commands via the command line interface in Ubuntu.  

Also worth noting, we were able to use a standard Ethernet cable rather than a crossover 

cable, as most modern drivers are able to recognize such an Ethernet connection directly 

between two computers. 
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Figure 17.  Testing Network Configuration 

The first test conducted was the standard load test.  This simulated a large 

instantaneous burst of client requests.  All client requests were generated simultaneously, 

with no ramp up time between the requests.  Worth mentioning is that while we simulated 

thousands of simultaneous client requests, in actuality, since there was only a single 

computer generating the requests, there was a small delay between these requests, so they 

were not truly simultaneous.  During this test, we served a static HTML document 

through non-persistent TCP connections.  This meant that a single client thread was only 

responsible for generating an HTTP request once per test.  The clients’ requests arrived in 

the server’s queue nearly simultaneously.  Once the entire queue had been serviced, then 

the test would be complete.  This test was chosen to simulate the condition where a large 

burst of traffic suddenly arrives at the queue, which is traditionally one of the most 

stressful demands that can be placed on a server.  This scenario was also useful for 

highlighting the potential strengths and weaknesses of different kinds of servers. During 

this test, we incrementally increased the number of simultaneous client requests, in 

thousand client increments starting from one thousand requests all the way up to twenty 

thousand requests.  We did this first for our Node.js server and then for our Apache2 

server.  The results for response times are presented in Figures 18–21. 

The second test was designed to more closely simulate the operation of the MSAT 

application, which required multiple persistent client connections.  In this scenario, each 
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client made multiple HTTP requests per second, in order to simulate achieving a real-

time monitoring capability for the UGS system.  In order to accomplish this, clients 

established persistent TCP connections, which stressed the server in a different manner 

than the first test.  After the initial influx of client connections, the server had to 

constantly work to service pipelined client requests. 

 

Figure 18.  Comparison of Average Response Times for Concurrent Requests 

As is apparent from the graph in Figure 18, at one thousand requests both servers 

had comparable response times.  After this point, the Apache2 server began to slow down 

considerably, while the Node.js server gradually increased its response time.  After the 

seven thousandth concurrent request mark, the Apache2 server was no longer able to 

service requests and approached the 100% error rate.  The Node.js server easily surpassed 

the Apache2 server break point and went on to nearly double the allusive (i.e., C10k 

problem) ten thousand concurrent client connection mark for a web server.  Past the 

nineteen thousand-request mark, the performance of the Node.js server quickly degraded 

as error rates grew unbounded. 
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In addition to utilizing JMeter, we wrote server side code that measured the 

service time of each request and calculated an average service rate per iteration of the 

test.  Shown in Figure 19 are the service rates for the Node.js server. 

 

Figure 19.  Node.js Server’s Service Rate for Requests 

The results were inconclusive and possibly indicated a slight decline in service 

rates as concurrent requests grow.  This was unexpected, as we anticipated a more 

definitive decline in service rates as the number of requests grew.  This may indicate that 

there was a bottleneck existing somewhere within the operating system, or at some 

location outside of our server logic.  This could be further explained by the way the 

operating system deals with a large number of TCP connections. 

For the second test, we further tasked each client to repeatedly make pipelined 

HTTP requests to the server, until one hundred thousand total client requests had been 

serviced.  We started at one hundred simultaneous connections and incremented by one 

hundred clients, until one thousand concurrent connections were established.  After 
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observing the results from test one, we expected Node.js to greatly outperform Apache2, 

but the results shown in Figures 20 and 21 were surprising. 

 

Figure 20.  Comparison of Average Response Times for Persistent Connections 

 

Figure 21.  Comparison of Error Rates for Persistent Connections 

In Figure 20, the Apache2 and Node.js servers performed almost identically, with 

Node.js having a slight advantage over Apache2 until the 800 connections mark.  At this 

point Node.js suddenly failed and Apache2 continued on with error rates growing 
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linearly.  This is where Figure 21 is of interest, because Node.js experienced a zero 

percent error rate all the way up to the 800 simultaneous connections point, while the 

Apache server began experiencing errors as early as 300 connections.  This indicates that 

there was probably an acute reason for the sudden failure of the Node.js server, and we 

speculate that this reason could be operating system limitations, or even limitations to the 

underlying configuration of our Node.js installation.  We also have no definitive 

explanation for the gradually increasing error rate of the Apache server.  This may 

warrant future exploration. 

This testing led to interesting conclusions.  We believe that the results of our 

second test validated our design decision to migrate our UGS application server from the 

multi-threaded model of Apache to the asynchronous Node.js.  The reliability of the 

Node.js server all the way up to the 800 connection mark was encouraging and we 

believe made it a better choice for our application than Apache, as the need for more than 

800 simultaneous users of our system is unlikely.  In other words, we placed an emphasis 

on reliability for a reasonable number of simultaneous connections over the capability to 

handle an extreme number of connected clients but with a diminished overall reliability, 

even at lower numbers of client connections.  The results of test one further validated this 

design choice because Node.js clearly was more capable of handling massive bursts of 

requests without errors.   

Overall, due to a number of interesting research papers that have already 

addressed the performance of Node.js, we expected Node.js to excel during these two 

tests.  However, with both tests, Node.js experienced dramatic failure points, rather than 

gradual degradations of performance.  This would seemingly indicate that we did not 

approach the actual limitations of the Node.js server, but rather witnessed a potential 

misconfiguration or bottleneck that was capable of being overcome.  This is in contrast to 

the Apache2 server that experienced gradually increasing error rates in the face of 

growing concurrent connections, which we believed was an indicator that the server 

model itself was being stressed to its eventual breaking point.  For future work, we 

propose examining the potential sources of the Node.js failures in an effort to correct 

them.  This would involve carefully delving into the configuration of the operating 
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system and Node.js source code.  After doing so, another benchmarking test should be 

performed.   

Nonetheless, based on the results of this test, Node.js was selected for use to 

replace the Apache2 server used in Version 1 of the application. 

e. Interface with Nodes 

In Version 2 of the MSAT application server, the MySQL database was 

eliminated in an attempt to improve performance by fixing the bottleneck that had existed 

previously, when numerous blocking queries were executed by the AJAX version.  This 

was enabled by the ability of Node.js to make direct queries to the SIS database process 

running on the ADAPT server through the shelljs module.  Recall that the SIS process 

provided the interface with the ADAPT nodes, which sent pertinent environmental data 

to the SIS process running on the machine via port 10000.  The shelljs module is an 

official Node library that allowed the execution of bash shell commands from within a 

Node.js application.  The querying was executed in a non-blocking fashion through 

shelljs’ ability to execute shell commands asynchronously.  A callback function provided 

to the asynchronous shelljs query to SIS parsed the results for the query into a JSON 

object directly, thus eliminating the need for the parser written in Python on Version 1 of 

the server.  This JSON was then transferred to the clients. 

Figure 22 is a container diagram, highlighting the interactions between code 

modules that occur within the MSAT system.  The two servers are depicted with their 

functions, as well as the communication that occurs between them, enabling the sharing 

of sensor field messages to the user’s mobile device.  In addition, the peripheral devices, 

IP camera, and nodes are shown and how they interface with the tactical network server. 
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Figure 22.  Application Container Diagram 

f. Replacing AJAX with WebSockets 

Server-polling through AJAX put unnecessary stress on the application server due 

to the inefficient generation of HTTP requests.  With this model, clients requesting 

situation updates sent an HTTP request every second while connected, even when the 

server had no new information to push.  To eliminate this unnecessary generation of 

network traffic and reduce total network latency, AJAX was replaced by the use of 

WebSockets.  WebSockets allowed for the establishment of continuous, bi-directional 

connections between client and server entities.  This provided the ideal instrument for 

real-time updates from the server because with WebSockets, data only had to be pushed 

over the network when there was new information to report, eliminating the unnecessary 

polling messages.   
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The use of WebSockets was enabled by the Socket.io module for Node.js.  

JavaScript on the client pointed to the location of the WebSocket (i.e., port number and 

IP address) on the server and established the connection upon the client initially being 

served the SPA.  On the server, the setInterval method was used to query SIS every 

second, parse the result into a JSON object, and pipe this result through all open 

WebSockets to clients.  This provided the real-time view into the sensor field. 

g. Blue Force Situational Awareness: Locations and Chat 

MSAT was intended to provide advanced situational awareness to users of the 

application, so besides just updating sensor field activity, the application provided the 

ability to track and communicate with friendly forces (i.e., blue forces) on the battlefield.  

This was accomplished through two means: plotting friendly locations and chat 

functionality. 

The Geolocation API provided by HTML5, in the client SPA, obtained the user’s 

location either through a Wi-Fi location estimation, which was accurate only to 500 

meters, or through GPS when available on the client device.  Each time the Geolocation 

API obtained a fix for a user’s location, a callback function would be triggered that would 

send the user’s coordinates via the WebSocket to the server.  Every time the server 

received an updated location from a connected client, a callback would be triggered that 

updated the user location in an array used to track the locations of all connected users, 

and the updated coordinates would be sent out to all connected clients through their 

WebSockets, ensuring that each client maintained an accurate picture of friendly 

positions.   

Through the SPA, clients had the ability to chat with all other users of the 

application, and the server provided the backbone of this functionality through 

WebSockets.  Client’s had the option of sending either private messages meant to be 

received only by a single user or public messages meant to be broadcast to the entire field 

of users.  The server received messages generated by the client through the client’s 

established WebSocket; upon receipt, a callback function on the server multiplexed the 

message appropriately.  To be able to send private messages selectively to individual 
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clients, an array was maintained on the server that associated WebSocket identification 

numbers (i.e., unique numbers assigned to each WebSocket by the Socket.io API) with 

client-chosen usernames in order to resolve the WebSocket identification number of the 

intended recipient.  This WebSocket identification number therefore acted essentially as a 

client’s address for private messages and facilitated its appropriate routing. 

h. Remote Command and Control (C2) Configuration 

The capability to access the MSAT application remotely (i.e., from outside the 

local 802.11 network) was sought in order to enable personnel located offsite to monitor 

the sensor field.  This capability would support the use case of leadership located in a 

COC being able to see the same view of the sensor field as the warfighter, who would be 

using the application co-located (i.e., connected to the same local area network) with the 

sensors on the battlefield.  It would also support the use case of monitoring the sensor 

field while no friendly forces were co-located with the sensors (i.e., completely remote 

monitoring).   

To achieve this remote COC functionality in Version 2 of the MSAT application, 

the application server software was divided into two separate processes: a relay designed 

to be run on a machine located within the local 802.11 network, and an application server 

that could either be co-located with the relay running on the same machine, or 

alternatively run on a separate machine on a network outside the local tactical Wi-Fi 

network.  Both processes were implemented with Node.js and written in JavaScript.   

The purpose of the relay was to route data between the ADAPT sensor nodes and 

the application server.  The interface with the ADAPT nodes was achieved through the 

technique detailed in the above section.  Upon parsing the node data into a JSON object 

whenever it received results from a query to the SIS database, the relay would send the 

JSON object via user datagram protocol (UDP) to a server running on the remote server 

process located outside the local network.  UDP was chosen as the protocol for JSON 

transfers due to its speed.  The unreliability of datagram receipt with this protocol was 

deemed acceptable in this case because of how often new JSON objects were forwarded.  

The relay also fed camera images from the AXIS IP camera, which was integrated into 
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MSAT to provide a video capability, to the application server through an HTTP server 

listening on the relay server.  The relay server also passed on camera control commands 

(i.e., tilting, panning, and zooming), originating from the user on the mobile device, from 

the application server to the HTTP server on the AXIS camera in the form of HTTP 

requests.   

In the remote configuration, the application server was accessible by the relay 

through its public IP address.  In our implementation, the remote server was installed on 

an Amazon EC2 instance running the Ubuntu 12.04 Server operating system.  The relay, 

however, was located behind the network address translation (NAT) functionality 

provided by the Verizon MiFi (responsible for providing the Wi-Fi bubble locally), and 

thus was not directly accessible from outside the network.  Therefore, the relay had to 

initiate all connections to the remote server due to the inability of the remote server to 

locate the relay behind the NAT of the MiFi.   

The application server could be run on the same machine as the relay to give local 

users access to MSAT, it could be run separate from the relay to enable remote 

monitoring, or both on the local machine and remotely to allow both local operators and 

offsite COCs to use the application at the same time.    

i. Security 

After the remote COC configuration was introduced, Transport Layer Security 

(TLS) was implemented on the application in order to encrypt communications between 

clients and server.   

The native https module in Node.js was utilized to create an HTTPS server that 

established the encrypted tunnels between clients the server.  OpenSSL, an open source 

encryption-program for GNU Linux, was used to generate the private/public key pair 

necessary for using TLS.  OpenSSL was also used to generate the certificate required for 

authenticating the server for the HTTPS protocol.  The certificate was self-signed.    

Basic authentication was programmed into the server through the http-auth 

library.  The basic authentication protocol worked by maintaining a list of authorized 
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users in a file named users.htpasswd on the server.  This file contained a list of usernames 

and their corresponding passwords digests, which were the result of hashing the users’ 

passwords with the MD5 algorithm [55].  Once a user requested the SPA from the MSAT 

server, the user would be prompted to enter a valid username and password.  The server 

would then hash the password with MD5, and perform a lookup of this username with the 

password digest in users.htpasswd.  If the pair existed, then the server would serve the 

SPA to the client who could begin viewing the sensor field.  If not, the client would not 

be able to access the SPA. 

The application’s WebSockets were also encrypted via the WSS protocol, which 

implemented the WebSocket protocol over TLS.  This functionality was programmed 

using the Socket.io module for Node.js.  

j. Camera Solution and Streaming Video 

Because of the limited ability of the ADAPT nodes (i.e., PIR sensors only) to 

conduct threat classification and analysis, another means was sought in order to satisfy 

the requirement that an automated LP/OP would have to fulfill the information 

requirements of the SPOTREP.  With functioning camera drivers on the ADAPT nodes, 

video imagery could have been inspected by the human in the loop after sensor actuation 

by a threat.  Without these functioning onboard cameras, however, an external camera 

had to be integrated into the system as a temporary solution for the prototype.  This 

would emulate the functionality that would exist with working camera drivers.   

A single-camera was utilized for the sensor field.  The camera was an AXIS 

Model 214 PTZ IP surveillance camera with 18x optical zoom and autofocus capabilities.  

It had the ability to be remotely panned, tilted, and zoomed.  The camera had Ethernet 

interface but no 802.11 capability.  The camera ran an internal HTTP server on top of a 

Linux kernel.  This HTTP server provided a streaming feed from the camera in motion 

joint photographic experts group  (MJPEG) format, allowed for camera configuration, 

and for the camera to be remotely controlled through HTTP requests [56].     

To bring the camera up on MSAT’s wireless tactical network, the camera was 

connected via an Ethernet cable to a battery powered wireless access point (AP).  This 



 80

AP was configured as a wireless client on the network and was assigned a fixed IP 

address.  The camera’s HTTP server was exposed to MSAT’s tactical 802.11 network 

through a port-forwarding rule on its Ethernet-connected AP acting as a wireless client.   

MSAT’s relay used a loop to generate an HTTP request to the camera server, 

every second, in order to obtain a JPEG camera-image of the current view of the camera.  

This HTTP request was generated using the Request module.  Upon receipt of the 

response from the camera server, the relay process converted the jpeg image to a base64 

encoding, which was simply a string representation of an image, utilizing a method native 

to Node.js.  This base64 image was then embedded into the payload of a POST request 

that was then sent to a dedicated HTTP server on the MSAT application server, running 

on a port separate from the port used to service connected clients.  In this way, image 

streaming could be accomplished to the application server from behind the NAT of the 

Verizon MiFi device.   

Moving and zooming the camera was accomplished through the Pan-Tilt-Zoom 

API on the Axis camera, which consisted of using HTTP requests to the camera server.   

Because the HTTP server on the camera was inaccessible behind the local NAT, users of 

the application outside of the local network wanting to control the camera had to traverse 

the NAT.  This was accomplished with the following method: the client would generate a 

command utilizing the UI on their mobile device and this command would be sent to the 

MSAT application server through the WebSocket, which maintained a persistent 

connection between client and server.  The Application server would then store this 

command, and attach it to the response message to the next POST request containing the 

base64 image from the relay running behind the NAT.  Recall that this POST request 

containing the camera images arrived every second according to the interval set on the 

relay.  The relay would receive this command in the response, parse it into the correct 

HTTP request format for the Axis camera, and send it.  The camera would receive this 

command, and move the camera accordingly. 



 81

C. UI 

MSAT presents a web application to users’ web browser windows.  Here the user 

can interact with the different functions of the application, depending on what features 

the browser supports (i.e., Safari, Windows 7/8, Firefox, Chrome).  Most modern web 

browsers try to support all the latest additions of JavaScript, CSS3, HTML5 and all the 

various media plug-ins; however, they all complete that task in different ways.  This is an 

important aspect to consider when designing web applications so that a user is not 

penalized due to their choice of web browser.  Essentially, the use of well thought-out 

code allows for compatibility with the largest number of browsers and devices.  Such 

ubiquitous compatibility presents a formidable challenge, but since 2010 there has been a 

significant drive for developers to achieve this goal, that is, to best respond to the user’s 

device and browser with appropriately formatted application information. 

The web browser is a unique medium upon which a web developer works, since it 

has no boundaries like an art canvas.  Instead, the x and y coordinate planes on the scroll 

bar are indefinite.  This makes working within the medium very fluid, due to the fact that 

the browser can scroll and size freely.  In the past, this medium for web development has 

been approached as if it were a print medium, with specific boundaries and limits.  The 

print medium is not fluid and a design width and height is the first thing that is settled 

upon when beginning a project interface [57].  Therefore, a different approach needs to 

be made so that we can tackle this issue that is concisely described in [41]: “In short, 

we’re faced with a greater number of devices, input modes, and browsers than ever 

before.” 

1. RWD Description 

The basics of RWD were briefly discussed in Chapter II, but a more in depth 

description is needed to fully understand how it was utilized in the development of the 

MSAT UI.  RWD is implemented through three key tools and is described in [41]. “Fluid 

grids, flexible images, and media queries are the three technical ingredients for 

responsive web design, but it also requires a different way of thinking.  Rather than 

quarantining our content into disparate, device-specific experiences, we can use media 
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queries to progressively enhance our work within different viewing contexts” [41].  In 

terms of the MSAT, the web application would already have a responsive base layer—the 

map with node positions, detections, and tracks.  This layer could already be easily 

scaled, zoomed, and resized.  The challenge in making this design responsive arose from 

the implementation of a navigation bar and the various content boxes (i.e., chat 

application, video feed, node information) that would be displayed.    

For the purposes of the MSAT application, fluid grids were not necessary since 

the design relied upon a navigation bar on top of an interactive map.  The sole focus 

would be to have one element, a fluid navigation bar, able to scale to a variety of devices 

and provide the user with commonly utilized functions to interact with the sensor field.  

Figure 23 is an example of how this navigation bar’s container would be styled, on top of 

the map layer. 

 

Figure 23.  Fluid Element Example in the MSAT CSS3 File 

Flexible images are achievable through fairly straightforward code, much like the 

concept of the fluid element shown above.  The key concept is to utilize a page structure 

that defines containers for elements and then the elements can fill the width of their 

container.  If the container shrinks for different screens, so does the image, hence its 

ability to adapt to the size.  Figure 24 is an example of how the video image is defined 

within the CSS3 file in order to make it a flexible image.   
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Figure 24.  Flexible Image Example in the MSAT CSS3 File 

These three lines of code allow the image to accomplish the previously defined 

goal of being a flexible image by creating a container (i.e., div) within the video box (i.e., 

videoBox) and allowing it to fill that space.  If the video image size is larger than that of 

the video box, then the image will be cropped. 

The media query contains two pieces of information: the first being the media 

type (i.e., screen for this case) and the second being the query of a media feature (i.e., 

width or height and some associated value).  When the CSS3 code is executed by the 

browser and a media query is matched then the enclosed styling of that query will be 

applied.  Figure 25 is an excerpt of media query CSS3 code that is used in the MSAT, 

which allows us to query for a mobile device screen and apply a smaller navigation bar. 

 

Figure 25.  Media Query Example in the MSAT CSS3 File 
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This media query specifically targets iPad and iPad mini, in portrait mode, by 

defining a specific device width and pixel density.  The follow-on styling that occurs 

inside the media query brackets is used to fix break points that occur within that device’s 

screen.  Unfortunately, the task is not so simple as to write one media query and be done.  

The design has to be thoroughly tested to identify break points (i.e., content begins to 

degrade, overflow containers, or loose functionality) and at each point a new rule needs 

to be applied to fix the degradation.  This is a tedious process that is time consuming for a 

developer.  The end result is that for the extra time invested by the developer, in 

thoroughly testing the design, the output will be a more universally formatted tool that all 

devices can use. 

With all these tools in concert, the application began to reflect a RWD aimed to 

deliver content to a wide range of devices. Figures 26–32 are screen shots of the 

application on a desktop utilizing different browsers, two different Android and Apple 

tablet devices, and an iPhone mobile browser in the landscape and portrait orientation. 

 

Figure 26.  Desktop Device Running MSAT in Chrome Browser 



 85

 

Figure 27.  Desktop Device Running MSAT in Safari Browser 

  

Figure 28.  Android Tablet Landscape View 
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Figure 29.  Apple iPad Mini Landscape View 

 

Figure 30.  iPhone4 Landscape View 
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Figure 31.  iPhone4 Portrait View 

 

Figure 32.  iPhone4 Portrait View with Menu Expanded 
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These screen shots of various devices and their browser highlights the RWD 

implementation and the motivation for pursuing this framework.  With this capability, the 

MSAT is not pigeonholed to a specific device, operating system, or browser and it 

provides more flexibility to the user to determine on which platform to employ it. 

2. Supporting Technology 

HTML5 and CSS3 alone cannot provide all the functionality required for the 

MSAT UI.  In order to increase user feedback through audio, visual, and haptic cues there 

must be outside libraries and frameworks incorporated.  For the MSAT system, the 

following libraries were used: JavaScript, jQuery, Leaflet, and Esri Leaflet. 

In the book [58], the author gives a snapshot of JavaScript’s history with web 

applications by stating:  

The History of the web is punctuated with technological improvements. 
One of the earliest additions to HTML was the img element, which 
fundamentally altered the web.  Then, the introduction of JavaScript 
allowed the web to become a more dynamic environment. Later, the 
proliferation of AJAX made the web a viable option for full-fledged 
applications. [58]   

JavaScript has evolved into a web scripting language that provides both client-

side scripts and server-side network programming.  We utilized this programming 

language exactly for that reason, as it enables a development team to code the client- and 

server-side code in the same manner.  On the client side, JavaScript is utilized for 

functions that allow the user to interact with the DOM and toggle on/off certain features 

on the navigation bar.  It is also used to parse the JSON in order to add or update node 

positions, detections, and tracks onto the map layer.  JavaScript also makes calls to the 

AJAX engine, which allows for the nodes, detections, and tracks to be dynamically 

populated on the map.  The server-side use of JavaScript will be covered in a later 

section, titled Web Application Server. 

JQuery is a library that abstracts away the details of JavaScript and purports to 

allow simpler, cleaner scripting on the client-side [59].  We utilized this in only a few 

instances, as it afforded an easier way to manipulate an item on the page versus 
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JavaScript.  This use of jQuery can most notably be seen in the drop down menu for 

mobile devices (i.e., Figure 32).  The function to create this effect is built from the 

JQuery library. 

Leaflet is an open-source mapping tool that was discovered during the researching 

phase of the thesis.  The website [60] states,  

Leaflet is a modern open-source JavaScript library for mobile-friendly 
interactive maps…Leaflet is designed with simplicity, performance and 
usability in mind. It works efficiently across all major desktop and mobile 
platforms out of the box, taking advantage of HTML5 and CSS3 on 
modern browsers while still being accessible on older ones. [60]  

This was a suitable fit with the rest of the web application, due to its availability, 

development community, and ease of use.  It allowed for a rapid prototype of MSAT to 

be developed in the early stages of the thesis process.  Leaflet allows for the loading and 

placement of map tiles within the browser and the control over styling and size for the 

node icon, detection radius, and track segment. 

Esri Leaflet is an open source plug-in that allows for Esri’s ArcGIS map tiles to 

be easily displayed and manipulated within the Leaflet library [61].  This provided the 

MSAT application with various high quality maps from which the operator can select, 

while keeping with the requirement of finding open source solutions to minimize cost. 

3. Testing 

Designing and developing the UI was approached in two phases.  The objective of 

the first phase was to create a simple, yet functional, UI prototype that would allow for 

the testing and development of the web application server.  Since the majority of the 

intensive coding work revolved around the server, it was important to have a rapidly 

developed (i.e., low development cost) client-side device that could portray an adequate 

picture of the information being retrieved and parsed by the server.  Figure 33 shows a 

screen shot of the UI prototype; this UI was utilized for the majority of the development 

of the web application server. 
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Figure 33.  MSAT UI Version 1 

The initial MSAT design resulted in a wide variety of ways in which the users 

access the application depending on the type of device used.  Due to this variety, the user 

struggled to receive an accurate picture of the sensor field if they were not on a system 

similar to the development platform.  In addition, interaction with this design was 

difficult to navigate on a mobile device.  This further solidified our drive to pursue a 

responsive web design that could provide a consistent interface for a large variety of the 

current devices and web browsers. 

The objective of the second phase was to build upon lessons learned during the 

first phase and implement a design that was unobtrusive to the user’s interaction with the 

device. Specifically, we sought to maximize their situational awareness, make 

reoccurring tasks readily accessible, and provide various forms of feedback to aid in their 

task of monitoring the sensor field. Figure 34 shows a screen shot of the UI developed 

according to a RWD approach utilized for the final stages of development and for all of 

the field-testing. 
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Figure 34.  MSAT UI Version 2 with a RWD Approach 

The UI developed according to the RWD approach was able to display the web 

application on a variety of devices in a manner that retained all of the application 

capabilities and functionality.  Testing this RWD-based implementation on a multitude of 

mobile devices, browsers, laptops, and operating systems verified the design was 

operating as intended. Feedback from user interaction with the MSAT design is covered 

in the section titled Discussion of Results.   

D. COMPLETE SYSTEM TESTING 

1. Summary of Testing 

For the final stage of the incremental testing, we spent two days testing a 

deployment of the complete MSAT system.  The purpose of this testing was to 

demonstrate that such a system could feasibly automate the LP/OP, thus enabling follow 

on research and eventual development of a refined system for use by military end-users.  
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To test the system, we created a mock defensive scenario that highlighted a chosen use 

case, and we tested the performance of MSAT in handling the requirements of the 

scenario.  The system was deployed outdoors in an environment that was only partially 

controlled, meaning the system had to operate in contention with unpredictable factors.  

Marine infantry officers, with combat experience in Afghanistan and no prior experience 

or training with MSAT, operated the system.  The results of the test indicate that while 

the system needs further refinement and development, overall the reference design 

succeeded in meeting the requirements of an automated LP/OP. 

2. Concept of Testing 

To test the system, we first created a scenario that would highlight a likely use 

case for a unit employing the system in combat.  Since LP/OPs are very commonly 

deployed in defensive operations, we decided to employ MSAT as part of a defensive 

operation.  Specifically, MSAT would be integrated into a hypothetical defensive scheme 

of maneuver for a platoon tasked with blocking from a battle position.  The system would 

be used to surveil a section of road not visible from the defensive position due to 

intervening terrain (i.e., a hill).  An operator, without the ability to directly see the ground 

being covered by the sensors, would monitor MSAT for enemy activity.  The 

effectiveness of the system would be judged by its ability to detect enemy intrusions into 

the assigned Tactical Area of Responsibility (TAOR), enable the operator to classify the 

threat with enough detail to generate a SPOTREP, and allow the operator to send the 

SPOTREP via the built-in form and chat application in a timely manner. 

3. Conduct of the Test 

We decided to utilize five Marine officers as the operators of MSAT for system 

testing.  All had at least four years of military service, combat experience in Afghanistan, 

and little to no experience with employing sensor systems in combat.  We sought out 

these personnel because of their familiarity with LP/OPs, their ability to provide feedback 

on the utility of such a system, and their lack of specialized sensor training.  In no way 

were the operators evaluated, as the focus of the test was strictly the ability of the system 

to support LP/OP operations. 
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a. Scenario 

We formulated a mock scenario to frame the system testing.  The scenario 

involved establishing an LP/OP as part of a platoon in a static defensive position.  The 

LP/OP would be responsible for reporting all movement (enemy, friendly, and neutral) 

within its assigned TAOR.   

The following fragmentation order was created to describe the scenario and was 

briefed to our operators before testing began: 

Situation:  You are a fire team leader in 3rd Sqd, 3rd Plt, Company B, 1/3.  
You are currently conducting defensive operations with your Plt, in an 
effort to secure the town of Del Montia, while humanitarian assistance is 
provided to the inhabitants of the town, in order to prevent enemy 
insurgents from entering the city and disrupting the humanitarian efforts.   

Mission: Screen to the north of the Plt’s position in order to provide early 
warning to the Plt of enemy approach along ASR Red. 

Execution: Utilize MSAT as an automated LP/OP in support of your 
platoon’s defensive scheme of maneuver. 

Administration/Logistics: You will utilize a ruggedized tablet, in 
conjunction with the tactical network provided by MSAT. 

Command/Signal:  Upon enemy contact, generate and send a SPOTREP 
to the platoon CP utilizing MSAT’s integrated chat application. 

b. System Setup 

The setup of the testing site is depicted in Figure 35. The TAOR for the LP/OP 

was an east-west running road and trail bounded by a lake to the north, located on the 

campus of the Naval Postgraduate School. Foot and vehicle traffic in this area would be 

canalized due to the restricted nature of the terrain—the TAOR was bounded to the north 

by a lake and to the south by wooded terrain.  Therefore, the most likely avenue of 

approach for any enemy traveling through the AOR would be the east-west running road 

and trail.  The hypothetical platoon battle position was located one hundred meters south 

of the TAOR for the sensors, behind a hill with a clump of trees, such that the TAOR 

would not be visible from the main battle position. 
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Figure 35.  Testing Site 

(1) Node Placement and Spacing 

To enable monitoring of this most likely avenue of approach in the TAOR, 14 

sensor nodes were emplaced along the road.  Nodes were positioned on both sides of the 

road and trail for a total frontage covering approximately 200 meters.  All nodes were 

emplaced by a single individual who carried the nodes in a specialized load-bearing pack 

designed for carrying antelope by hunters, shown in Figures 36 and 37.  The nodes were 

spaced an average of 25 meters apart laterally along the road, and spaced approximately 

20 meters apart (the width of the road) across from each other on either side of the road.   
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Figure 36.  Side View of Nodes in Load-Bearing Pack 

 

Figure 37.  Top View of Nodes in Load-Bearing Pack 
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(2) Use of Sink Nodes 

Two of the 14 nodes emplaced were configured as sink nodes.  The role of these 

sink nodes, in addition to acting as sensors themselves, was to relay data from the non-

sink nodes that were communicating via the SAS ground-radio protocol, to the 

monitoring station attached to the 802.11 wireless network, essentially acting as a bridge 

between the SAS and Wi-Fi networks.  The purpose of using two sink nodes instead of 

connecting all of the nodes to the 802.11 was to limit traffic intensity on the wireless 

network that would affect application performance, conserve power on the majority of 

the nodes by turning off their Wi-Fi radios, and to circumvent the limitations of the 

4G/LTE Hotspot.   The Hotspot was limited to only 10 simultaneous Wi-Fi connections 

and had only a limited range (approximately thirty meters) that could not fully encompass 

all of the nodes, especially the ones at the outer edges of the sensor field. 

(3) Camera Placement 

The AXIS Camera used for visual over-watch of the sensor field was the only 

system component that required an external power source.  Thus, the camera was 

powered via a 100W inverter, plugged into the cigarette lighter of a pickup truck; the 

camera was placed on top of this truck.  The truck-mounted camera was positioned in the 

center of the TAOR (Figure 35) such that it would be capable of observing down the 

eastern and western avenues of approach.  The camera was connected via Ethernet cable 

to a portable, battery powered 802.11 access point configured to act as a relay between 

the camera’s video server and the 4G/LTE Hotspot.  Utilizing this wireless relay, the 

camera’s server was connected to the local Wi-Fi network and assigned a dynamic IP 

address via the 4G/LTE Hotspot’s DHCP server, making camera controls and video feed 

accessible from the rest of the network. 

(4) Tactical Wireless Local Area Network (TWLAN) 

In order to transition the MSAT from the lab to an outdoors testing area, there 

needed to be a mobile network in place.  MSAT components were networked utilizing 

802.11 g.  A Verizon 4G/LTE Hotspot (MiFi 5510L) provided the Wi-Fi bubble for the 

sink nodes, the camera, the application server, and the mobile monitoring devices to 
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communicate and also access to the outside Internet via Verizon’s 4G infrastructure, 

which provided coverage at the testing area.  The Wi-Fi was secured using WPA2 with a 

pre-shared key (PSK).  All connected components, to include the ADAPT nodes, utilized 

this key to gain access to the network.  

(5) Application Server 

The application server was installed on a laptop located inside the cab of the 

pickup truck, located with the Hotspot and the camera.  The laptop was powered with its 

own internal battery.   

(6) Monitoring Devices 

An iPad Mini tablet with a ruggedized case and a Samsung Galaxy Tablet were 

used for the monitoring platforms.   

4. Testing Protocol 

A testing protocol was created in order to test the system’s capabilities.  Actors 

would walk tracks through the sensor field, and mobile devices connected to the 

application server were utilized to classify intrusions, generate SPOTREPs, and 

communicate the SPOTREPs over the network to the simulated platoon command post 

connected via 802.11. 

a. Simulated Intrusions into the Sensor Field 

In order to test the ability of the system to detect intrusions and enable the 

classification of threats and the generation and sending of SPOTREPs, events were 

randomly generated and presented to the system.  A random event generator was created 

in the Python programming language that when executed output an event description that 

would define the SPOTREP of the event.  The events were limited in scope in order to 

facilitate standardized reporting using a prepopulated SPOTREP form within the MSAT 

user interface.  All events would be classified according to the acronym SALUTE.  For 

the field testing, the size of the event was limited to either one or two personnel, the 

activity of the personnel was either running or walking, the location of the personnel was 

either from the west or from the east, and the unit identification was friendly, enemy or 
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neutral.  Time was the time of observation in local time, and equipment was a rifle, a 

pistol, or nothing at all.  Finally, no-events were possible, meaning no intrusion would 

occur during a time period.   

Actors were utilized to play out the randomly generated events for the system to 

attempt to classify.  Actors simulating friendly forces wore digital USMC camouflage 

utilities.  Actors wearing green flak jackets simulated enemy forces, and neutral forces 

wore neither.  The actors carried rubber rifles, pistols, or nothing based on the generated 

scenario.  The actors entered into the sensor field on the path either from the west or the 

east depending on the scenario, and ran or walked according to the event description.  

Tests were run for approximately four hours each day for two days, and this total 

testing time was subdivided into 5-minute periods.  One event would be executed every 

period, with no activity being a possible event.  Each operator was presented with at least 

three events. 

b. Use of Mobile Devices to Monitor the Sensor Field 

Operators were tasked with utilizing a tablet to monitor the sensor field and 

generate SPOTREPs based on intrusions into their TAOR.  An Android tablet would be 

utilized for half of the events, while the other half of the time an iPad Mini would be 

used.  Before testing began, the operators were given five minutes to familiarize 

themselves with the user interface and to practice controlling the camera.  

Constantly running a camera on the ADAPT sensor nodes would consume battery 

power at a rapid rate, thus limiting its lifespan in the field before needing to be recharged.  

Also, constantly monitoring a camera requires persistent human attention, thus 

consuming the human resources of the combat unit utilizing the system.  Therefore, the 

constraint was imposed that the camera could only be utilized by the operator to classify 

threats.  In other words, the camera could only be utilized by the operator after the 

sensors reported an intrusion into the sensor field through the system’s reporting of 

detections and tracks to the monitoring device.  The camera would be the primary means 

of classifying threats due to the lack of a mature threat classification algorithm within the 

sensor system because of the lack of a multiplicity of sensing modalities.   
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Every event during system testing was divided into three phases.  During Phase 

One, the threat made entry into the sensor field from the east or the west and walked a 

track along the path.  The distance into the sensor field that a threat was able to move 

before the operator made the determination that an intrusion had occurred based on 

reporting from the sensor nodes was recorded for every event.  Upon detection of the 

threat, Phase Two began and the operator was allowed to open the camera interface on 

the tablet and attempt to classify the nature of the intrusion through control of the camera.  

The time from threat detection until threat classification, using the camera, in seconds 

was recorded as a metric.  After the threat was classified, Phase Three began, which was 

the generation and sending of the SPOTREP.  The amount of time taken by the operator 

to open the SPOTREP form, complete the form, send the form, and have it received by 

the mobile device simulating the platoon CP was recorded.  Finally, the accuracy of the 

SPOTREP submitted by the observer was recorded.  

5. Limited Scope of Testing 

The purpose of the testing was to demonstrate the potential for a reference design 

for an automated LP/OP and not as a test to generate precise metrics for a finished, 

production product.  Therefore, environmental factors were not precisely controlled and 

results would be skewed by human factors such as unique characteristics of the 

individuals monitoring the system through the UI, and by environmental factors such as 

wildlife in the testing area, weather conditions, vegetation, and unplanned movements of 

people through the site.  The uncontrolled and unpredictable factors were not avoided; 

rather, they were embraced for the interesting commentary they would provide regarding 

the feasibility of the system. 

6. Discussion of Results 

a. Node Emplacement 

The nodes were hand-emplaced along the route by a Marine carrying all 14 nodes 

in a pack.  The 14 total nodes weighed 43 pounds, and it took 7 minutes and 38 seconds 

for them to be set out the first day, and 6 minutes and 44 seconds to set them out the 

second day. 
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b. Network Formation 

The individual sensors were always emplaced while in the “off” state, and we 

observed how long it took on both days for the network to autonomously form after 

turning on the nodes.   Across both days, it took an average of 27 seconds for the first 

link to be created from a sink node to the application server, but 15 minutes and 30 

seconds for the entire network to form. We counted the network as being formed after the 

majority of nodes obtained GPS fixes and created links with neighbor nodes, and no new 

links were in the process of being formed.  The first day, 12 of the 14 nodes joined the 

network, with the remaining two not forming links with neighbors.  This occurred both 

times the network formed.  The second day, only 11 nodes initially joined the network.  

After the network stabilized, meaning at least five minutes had passed with no new links 

being formed, we set out an additional sink node and three non-sink nodes.  It took an 

additional 8 minutes for three of these four new nodes to form links to neighbors, with 

one never forming any links and joining the network.  In total, four of the seventeen 

nodes put out never joined the network, which could be due to hardware failures that 

have been present throughout the testing process. 

c. Intrusion Events and Generating SPOTREPs 

Five separate Marine Corps officers operated the system during the field 

experiment to test MSAT’s ability to respond to various types of intrusions into the 

TAOR of the LP/OP.  We generated SALUTE events, with our Python program, to 

present the operators with scenarios over the five-minute test period.  Upon the intruder 

entering into the sensor field, each operator had to rely on the sensors in order to 

determine when an intrusion had taken place in their TAOR. In Figure 38, the initial 

detection in the sensor field is shown, as it was displayed to the operator with a mobile 

device.  



 101

 

Figure 38.  Android Tablet Depicting First Intrusion Detection from the West 
Side of the Sensor Field 

Once the operator observed the initial detection, they would begin to focus more 

intently on the area for supporting evidence of an intruder.  The follow-on progression of 

an intruder continuing into the sensor field, from initial detection, is displayed in Figure 

39.  They could utilize the detection and/or the tracks to make this determination.  The 

majority of the operators waited until tracks formed, which, according to the tracking 

algorithm of the system, were the result of three simultaneous detections in close 

proximity.  The population of a track, after three detections, is shown below in Figure 40. 

This strategy of relying on tracks required that the user focus less overall attention on the 

screen constantly and decreased the incidences of false positives for intrusion.  There 

were two false positive intrusions identified during the two days of testing:  a flock of 

geese in the TAOR caused one, and the other was likely due to vegetation moving in the 

wind that caused PIRs on the sensors to trip in the absence of human intruders.   
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Figure 39.  Intruder Continuing into the Sensor Field and Generating Second 
Detection 

 

Figure 40.  Intrusion Classified Using the Camera After Generating Third 
Detection and the Track Indicator 
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Over the course of the two days of testing, we recorded how far into the sensor 

field an intruder was able to travel before the operator identified that an intruder had 

entered his TAOR.  Without a large variance, targets traveled on average 61 meters into 

the sensor field before being identified as intruders by MSAT operators.  Only one event 

resulted in the intruder making it through the entire sensor field without being identified 

by the system.   

For each SALUTE event, the operator opened the camera window (shown in 

Figure 40) to classify the threat after identifying that an intruder had entered the TAOR.  

The length of time it took the operators to orient the camera on the intruder and glean 

enough information to generate the SPOTREP was generally more varied than the time to 

detect the initial presence of the intruder.  Sometimes the operator was able to quickly 

and efficiently manipulate the camera and find the target in less than 10 seconds.  Other 

times they fumbled with the controls—one operator took 37 seconds to get the camera 

trained correctly on the target, and there were three instances of the operator not being 

able to identify the intruder after initial detection.  The rest of the twenty-two events 

resulted in the success of the operator in classifying the target.  There did not appear to be 

any correlation between the speed of the target and the success of classification—two of 

the missed intruders were running instead of walking.  However, we noticed that the 

users had more difficulty utilizing the iPad Mini to control the camera than utilizing the 

Android tablet.   

Finally, we observed the users as they attempted to complete the SPOTREP form 

in the UI and send it to the simulated platoon command post.  The SPOTREP is shown 

below, in Figure 41. The average length of time to complete the SPOTREPs was 11 

seconds, and the average time for the SPOTREP to be received by the command post on 

the unused tablet was 1500 milliseconds.  The population of the SPOTREP, within a chat 

application, and its receipt by the command post is shown in Figure 42. We also observed 

that the accuracy of the SPOTREPs completed by the users was very high.  During only 

one of the twenty-five scenarios, the operator completed an incorrect SPOTREP by 

reporting that the intruder was coming from the East, when in fact the intruder was 
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coming from the west.  After this mistake, the operator stated that he had become 

disoriented.   

 

Figure 41.  Operator Completing SPOTREP With Form After Intrusion 
Classification 

 

Figure 42.  SPOTREP Sent to Higher Headquarters Via Chat Function 
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d. Usability Issues 

We observed several usability challenges as users interacted with the UI.  A major 

design flaw discovered was that the application screen would zoom errantly when the 

user attempted to manipulate the camera controls.  This occurred on several occasions, 

and when this happened, the user would find it difficult to zoom the view back out to the 

original level and continue using the application.  Users were also observed struggling to 

capture the intruder on video with the camera while attempting to classify the threat.  The 

users often panned too far and had to pan back in the reverse direction with smaller 

movements under they came on target.  The operators also had difficulty using the 

camera control buttons due to their small size and one critiqued that the opaqueness of 

the buttons made them difficult to see.  Additionally, the radio buttons on the SPOTREP 

form were too small and were difficult to press by the user.  Another user expressed 

concern that opening the SPOTREP form took two steps instead of one—first he had to 

open the chat widget and from there click a separate button to open the SPOTREP.   

It was observed that during periods of bright sunlight, users had difficulty seeing 

the display on the tablet.  This was an equally difficult problem for both the iPad Mini 

and the Android tablet.  The users responded by attempting to move into the shade to 

reduce the glare.   

e. Latency Issues 

Multiple tablets connected to the application server at the same time resulted in 

noticeable latency.  This hurt the responsiveness of the application in the hands of the 

operator—map tiles loaded more slowly, the camera became less responsive to user 

input, and the video feed would periodically go down.  Interestingly, SPOTREPs being 

sent over the network through the chat application, which used WebSockets, did not 

appear to be affected.      

f. Battery Performance and Power Consumption 

We ran the system for four hours on both days.  Every component in the system 

not including the camera—the nodes, the 4G/LTE access point, the application server 
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laptop, the camera’s wireless relay, and the tablets—ran this entire time using their own 

internal power supply.  At the end of each four-hour day, the 4G/LTE Hotspot had 

consumed only a quarter of its battery capacity, the laptop also consumed only a quarter, 

and the nodes did not indicate any significant loss in capacity.  The camera did not have 

its own battery and was run through an inverter connected to a pickup truck.  The pickup 

truck’s battery was sufficient to power the camera without the need for the truck to be 

started to recharge.   

g. Environmental Disturbances 

On the second day, a gaggle of geese wandered into the eastern portion of the 

sensor field and loitered on the path for about an hour.  This led to almost constant 

detections from the nodes located in the vicinity of the geese.  This initially confused the 

operators with a false positive intrusion, causing one operator to believe an intrusion was 

taking place.  After using the camera to determine what this was, the operator ignored 

detections and tracks occurring in the area of the geese, leading him to also ignore a 

legitimate intruder entering the field from the area of where the geese were moving.  This 

indicated an inability to differentiate between active wildlife and human targets using the 

system. 

On both testing days, vehicles unrelated to testing drove on the path through the 

sensor field.  These were not used as part of the scenarios, but we noticed that the 

vehicles generated noticeably longer track-lines (shown in Figure 43) than dismounted 

intruders due to their greater speed, allowing for easy differentiation between vehicles 

and dismounts. 
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Figure 43.  Multiple Confused Tracks Due to Environmental Disturbances 

h. User Feedback 

The system operators provided commentary on the system after use.   Overall, 

they expressed frustration with the inability to recover from the mistake of accidentally 

zooming the application in too far, a problem that could be fixed by locking the display to 

zooming. Also, the operators identified the camera as being difficult to control with the 

small size of the buttons, and the cameras overall slow response to input.  One operator 

noted that the application had the tendency to “suck” the user in, meaning that its need 

for careful attention caused the user to not pay attention to his physical surroundings.  

Additionally, an operator noted that the nodes were too heavy after being allowed to 

handle a sensor node.  Finally, all users stated that the application would be useful to the 

military and expressed their satisfaction with the concept. 

7. Conclusion of Field Testing 

MSAT field testing highlighted key capabilities and limitations of the prototype 

system.  The system was capable of detecting intrusions into the TAOR for the majority 
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of events with a low false positive detection rate. However, these intrusions took on the 

order of several tens of meters in order to be registered by the system and alert the 

warfighter. Often, the system registered the intrusion after the intruder had already moved 

more than 60 meters into the sensor field.  In a close combat scenario, this could allow 

enemy forces to penetrate close enough to friendly forces to throw hand grenades.   An 

example of such a scenario would be employing sensors to protect a patrol base located 

in a dense urban environment.   

MSAT performed during the field testing with a low rate of false positive 

detections, even in the face of unforeseen environmental factors such as wildlife and 

vehicular traffic.  However, the degree of human effort required for target classification 

after a detected intrusion proved significant.  Due to the absence of a robust threat 

classification algorithm, the operator had to be brought very soon into the process cycle 

of intrusion detection and threat classification.  This means that the human had to expend 

much effort through the manipulation of the camera in order to determine what exactly 

was intruding into the sensor field.  In combat, this effort would come at the expense of 

the situational awareness of the warfighter’s immediate surroundings. More automation 

in the form of a threat classification algorithm utilizing multiple sensing modalities would 

facilitate bringing the operator into the loop later and less frequently than with having to 

rely so heavily on video imagery.  This would increase the combat power of the 

employing unit by freeing up man-hours otherwise required for system monitoring.   

MSAT proved capable of autonomous network formation, but the time required to 

do so proved too long to be practical in combat.  The network should have the capability 

to form in less than one minute in order to facilitate rapid deployment for the warfighter.  

Additionally, network latency caused unacceptable delays for the user.  A TWLAN 

providing greater bandwidth would enable better application performance and more 

simultaneous users of the system.   

The sensor nodes met the requirement to be mobile; a single man carried all of the 

nodes used for the field test in a pack.  This same individual also hand emplaced the 

nodes.  Even though a single person could carry all of the sensors, the 43-pound load 

should be considered too heavy for an end product.  Every measure should be taken to 
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lessen the weight burden for the modern warfighter by cutting weight in future iterations 

of the system.  The need for a separate server laptop added to the weight and complexity 

of the system and adversely impacted system usability by the warfighter.      

The proper placement of the nodes for maximum effectiveness was estimated 

based on prior testing and work with the sensor nodes, but no formal TTPs were utilized.  

In order to achieve maximum performance from the sensor system, TTPs should be 

developed that more precisely prescribe how to set up the sensor system based on the 

known capabilities and limitations.  This would also ensure fewer gaps in coverage in the 

sensor field.   

The MSAT performed acceptably across different platforms.  Users were able to 

use the application on both the Android tablet and iPad, in both landscape and portrait 

modes, with minimal issues thus achieving the goal of cross-platform compatibility for 

MSAT.   

Problems with the UI presented MSAT operators with difficulties that hindered 

overall performance.  Unresponsive buttons, difficulties manipulating the map, and 

screen layout issues would need to be solved through several iterations of testing and 

development, but this is outside the scope of the current prototype.      

Overall, the field testing indicated that MSAT was capable of providing a remote 

LP/OP functionality to the warfighter and providing a high degree of situational 

awareness with minimal training, even though the system had shortcomings relating to 

usability, power efficiency, weight, and minimal automation in classifying threats.   

E. CHAPTER SUMMARY  

MSAT, a reference design for an automated LP/OP, was built utilizing an existing 

wireless sensor node prototype and COTS components in order to provide a multi-

platform system capable of providing a high degree of situational awareness for ground 

tactical units.   

In order to build MSAT, DARPA’s ADAPT sensor node prototypes were adopted 

and tested by themselves.  This field testing revealed that while the prototypes suffered 
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from some severe limitations such as non-functioning cameras, they offered a functional 

platform for providing MSAT with its sensor capability.  Not only were these nodes 

capable of autonomous network formation, intrusion detection, and tracking, they were 

designed from COTS components with the goal of being inexpensive.       

MSAT’s application software was developed as the link between the sensor nodes 

and the warfighter and to provide additional functionality, such as chat between 

simultaneously connected users, blue force tracking, and reporting.  The application 

software consisted of an application server and UI elements.  The server was first 

implemented with Apache2; but due to limitations validated with a comparative 

benchmarking test, this server was substituted with the better-performing Node.js.  The 

UI was created with HTML5, JavaScript, and CSS3. Through the implementation of 

RWD, the application was made to be compatible with a variety of hardware and 

software platforms.   

Finally, MSAT’s components were connected via a Wi-Fi network enabled by a 

4G/LTE Verizon MiFi hotspot and a surveillance camera was utilized as a substitute for 

the sensor nodes’ non-functioning cameras.  The entire system was then tested in a field-

environment that simulated a defensive combat scenario.  The results of the testing 

showed MSAT capable of providing a remote LP/OP capability to a small tactical unit. 

However, the limitations of the system call for to future development and testing that 

should be completed prior to the fielding of a system meant for warfighters in combat.   
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V. SUMMARY AND CONCLUSIONS 

A. SUMMARY 

We developed a reference design for the automation of LP/OPs for use by 

infantrymen in combat.  Specifically, the design was tailored for the use-case of 

supporting a rifle squad in a defensive battle position.  To achieve LP/OP automation, the 

MSAT prototype was created through the interconnecting of multiple existing 

components and the creation of custom application software.   

The intrusion detection functionality of MSAT was provided through the use of 

sensor nodes developed by DARPA’s ADAPT program.  These sensor nodes relied on 

the use of internal PIR sensors to detect objects entering the sensor field.  The sensor 

nodes communicated wirelessly with each other and with handheld monitoring stations 

through low powered ground radios and a Wi-Fi network.  Additionally, the nodes were 

programmed to accomplish autonomous network formation, which had the effect of 

minimizing network configurations for operators in the field.  As part of normal 

operation, nodes shared data with immediate neighbors in a manner that allowed data to 

perpetuate hop-by-hop, without the need for a global addressing scheme or globally 

aware routing algorithms.  Such data included detections (i.e., the actuation of the PIR 

sensors), sensor locations acquired from GPS receivers embedded in each node, and 

correlated object movement or tracks.  Tracks represented the estimated location, 

direction, and distance of an intruder moving through the sensor field.  The tracking 

algorithm, part of node capability developed under the DARPA program, was executed 

locally by nodes through the interpretation of multiple detections shared across 

neighboring nodes of the sensor field in vicinity of the detected intruder into the sensor 

field.   

We developed MSAT’s application server in software installed on a Linux laptop.  

The application server acted as the intermediary between the sensor nodes in the field and 

the operator monitoring the system.  This application server received sensor data, 

including intrusions and tracks, via Wi-Fi from the nodes.  Our application processed this 

data into a graphical user interface that was presented to clients through a single page 



 112

web application.  Connected clients could access MSAT’s graphical interface using the 

web browsers on their devices.  The web application structure of MSAT allowed 

compatibility with a wide range of Android and iOS devices, with minimal need for code 

to be tailored to any one particular platform.  In addition to providing an interface from 

which to monitor the sensor field, MSAT tracked friendly user positions and supported 

chat communication between friendly units in order to facilitate coordination on the 

battlefield.       

We developed the application server initially using Apache server.  The inability 

of Apache server to service a large number of clients in real-time and the difficultly 

customizing the application for the desired use case led us to migrate to Node.js vice 

Apache.  We conducted benchmark testing in order to compare the performances of 

Apache and Node.js servers and validate the decision to incorporate Node.js into MSAT. 

Node.js allowed for the creation of a custom application that was more precisely tailored 

to the requirements of the system.  Additionally, its asynchronous execution model 

enabled improved performance.    

Inoperable drivers on the sensor nodes precluded the use of the onboard cameras 

for classifying intrusions into the sensor field.  We integrated an external surveillance 

camera with the ability to tilt, pan, and zoom into MSAT as a stopgap solution for the 

lack of an operating camera.  The application server and UI were modified to be able to 

stream real-time video feed to MSAT operators.  MSAT operators were also given 

controls on the UI to manipulate the camera to view threats in the sensor field.   

Client devices, the application server, and sink nodes (i.e., sensor nodes that relay 

data to the application server) were networked using 802.11 g/n, with a Verizon MiFi 

access point which provided 4G/LTE for outside Internet connectivity. 

To enable the remote C2 monitoring scenario, we configured the MSAT 

application server to relay sensor data outside of its local network to a proxy server on the 

public Internet.  This proxy server enabled connections through SSL/TLS to clients 

located anywhere with Internet access.  
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B. MSAT PERFORMANCE 

Through a series of tests and demonstrations, the MSAT reference design 

demonstrated the viability of an automated LP/OP tool for use by warfighters at the 

tactical level.  The MSAT prototype showed that a system can be built that is portable, 

easy to use, wireless, and compatible with commercial mobile communications 

equipment.  Most importantly, MSAT showed that an operator could successfully utilize 

UGS to generate an accurate SPOTREP, which is the primary performance standard for 

the LP/OP.  The prototype also identified challenges that must be overcome in order to 

provide an end product that is truly usable for the warfighter, including the need for more 

automation in threat classification, more power-efficient algorithms, and more sensor 

modalities. 

 Stand-alone testing of the ADAPT sensor nodes showed the sensors to be usable, 

reasonably durable, and capable of detecting intrusions into a sensor field. The nodes also 

proved capable of tracking multiple intrusions at a time through the sensor field; 

however, the accuracy of the tracks decreased as the targets moved closer together.  

Additionally, threat classification was limited only to what could be gleaned from tracks.  

Tracks were generated solely through the use of PIR sensors on the nodes.  False PIR 

triggers due to environmental factors (e.g., vegetation moving in the wind and heavy 

rainfall) degraded the accuracy of the intrusion detection and threat tracking.  By 

including additional sensing modalities in the system, this can be reduced or eliminated 

completely. However, the nodes did demonstrate the capability to withstand harsh 

environmental conditions such as heavy rainfall and sun exposure. 

The nodes had a battery life in the field of several days.  Since infantry units may 

have to operate for months at a time in the field, in a combat environment without access 

to external energy sources, a lifetime in the range of days is too short and would need to 

be lengthened.   Due to the nodes not reliably operating in a quiescent state, the lifetime 

could possibly be extended greatly if a low-power state was implemented.   

 Testing of the application server showed that the asynchronous, non-blocking 

model of Node.js outperformed the multi-threaded, blocking approach of Apache server. 
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 The testing of MSAT in a field environment demonstrated that the system could 

allow the user to successfully generate SPOTREPs, upon intrusions into the sensor field 

without having to directly observe the event, thus limiting potential exposure to the 

enemy.  The system was successfully used with both Android and iOS devices, showing 

cross-platform capability with a single code-base.   

The stopgap solution of using a surveillance camera had the secondary effect of 

showing the ability of MSAT to easily incorporate new components.  Additional sensors 

could therefore be introduced that would further enhance the capabilities, or allow the 

tailoring of the system to specific use-cases. 

C. RECOMMENDATIONS FOR FUTURE WORK 

Several improvements could be implemented to make an UGS-based, automated 

LP/OP more effective than the MSAT reference design as tested.  Multiple sensor 

modalities beyond the single PIR sensor could increase tracking accuracy and increase 

the level of automation for threat classification.  Possible sensors to be used are the 

geophone to measure ground movement, microphones to measure environmental audio, 

and magnetometers to detect metals in the area, which could classify an intrusion as a 

type of vehicle.   

More complex threat algorithms would have to be developed to fully leverage the 

use of multiple sensors and make threat determinations.  These robust threat algorithms 

would have the effect of reducing false positives and decreasing the amount of human 

involvement in the monitoring of the sensor field.  Adding two more PIR sensors to each 

node would allow 360-degree coverage and prevent potential gaps in the sensor-field.  

Implementing a quiescent state would reduce power consumption and increase the 

lifetime in the field.  This would require carefully controlling the duty-cycles of the 

sensors, such that sensors onboard each node were successively awakened as 

environmental noise due to an intruder increased, with only the lowest-power-consuming 

sensor (i.e., the PIR) remaining on in the absence of an event.  Finally, creating smaller 

sensor nodes would reduce the combat load of employing units, and at the same time 

reduce the profile to more easily avoid discovery by enemy personnel.   
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We did not conduct testing regarding information security, or operation in an 

electronically jammed environment.  Sensors would need to be hardened to potential 

attacks to include jamming for denial of service and the unauthorized access by malicious 

entities to the sensor node network, which would allow breaches in confidentiality and 

integrity of information on the network.   

The need for a separate application server apart from the user’s handheld device 

proved unwieldy and could be eliminated through the use of an HTML5/Javascript/CSS3 

application that could run in the devices’ headless web-engine (e.g., Webkit), which 

would implement a stand-alone application on the device and still allow compatibility 

across different device models with a single-code base. Another option would be to run 

the server on a number of UGS devices, allowing for redundancy and the ability for 

mobile devices to approach the sensor field and query it for information. Also, the need 

for a separate Wi-Fi access point could be eliminated through the use of Wi-Fi direct on 

the mobile device, or through Bluetooth communication with the nodes.   

Optimal layout of the sensors on the nodes should be studied to ensure the most 

efficient manner for employment.  Additionally, the use of unmanned aerial vehicles 

(UAV) for integration with the sensor nodes for added surveillance and communication 

capabilities should be investigated.   
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